Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta tìm bán kính R2 = IM2 => R2 = IM = (2 + 2)2 + (-3 -32) = 52
Phương trình đường tròn (C): (x +2)2 + (y – 3)2 =52
b) Đường tròn tiếp xúc với đường thẳng d nên khoảng cách từ tâm I tới đường thẳng d phải bằng bán kính đường tròn:
d(I; d) = R
Ta có : R = d(I; d) = \(=\)
Phương trình đường tròn cần tìm là:
(x +1)2 + (y – 2)2 = =>( x +1)2 + (y – 2)2 =
<=> 5x2 + 5y2 +10x – 20y +21 = 0
c) Tâm I là trung điểm của AB, có tọa độ :
x = \(\dfrac{1+7}{2}\) = 4; y = \(\dfrac{1+5}{2}\) = 3 => I(4; 3)
AB = \(2\sqrt{13}\) => R =\(\sqrt{13}\)
=> (x -4 )2 + (y – 3)2 =13
Gọi R là bán kính của đường tròn (C)
(C) và C1 tiếp xúc ngoài với nhau, cho ta:
MF1 = R1+ R (1)
(C) và C2 tiếp xúc ngoài với nhau, cho ta:
MF2 = R2 – R (2)
Từ (1) VÀ (2) ta được
MF1 + MF2 = R1+ R2= R không đổi
Điểm M có tổng các khoảng cách MF1 + MF2 đến hai điểm cố định F1 và F2 bằng một độ dài không đổi R1+ R2
Vậy tập hợp điểm M là đường elip, có các tiêu điểm F1 và F2 và có tiêu cự
F1 .F2 = R1+ R2
Giải :
Bán kính R của đường tròn tâm C(-2; -2) và tiếp xúc với đường thẳng
∆ : 5x + 12y - 10 = 0 thì bằng khoảng cách từ C đến ∆
R = d(C ;∆) =
=> R = = .
Đường tròn có bán kính là R = d I , ∆ = 3.2 − 4.5 − 6 3 2 + − 4 2 = 4
ĐÁP ÁN D