K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Viết pt đg thẳng (d1) // (d) cắt Ox tại A, Oy tại B và S∆AOB = 8

Gọi (d2) có dạng y = ax + b và (d2) // (d) \(\Rightarrow y=4x+b\)

A có tọa độ = (a;0) \(\Rightarrow O_A=\left|a\right|=4\)

B có tọa độ = (b;0) \(\Rightarrow O_B=\left|b\right|\)

Lại có \(\frac{1}{2}\left|ab\right|=8\Rightarrow\frac{1}{2}.4.\left|b\right|=8\Rightarrow\orbr{\begin{cases}b=4\\b=-4\end{cases}}\)

a, Đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 2 nên 

( d ) đi qua A( 2,0 )

Thay A( 2,0 ) vào đường thẳng d ta được 

\(\left(1-m\right).2+m+2=0\)

\(2-2m+m+2=0\)

\(4-m=0\)

\(m=4\)

b, Đường thẳng d song song vs đường thẳng y = 2x - 1 nên

1 - m = 0 và m + 2 khác -1

m = 1 và m khác -3 

29 tháng 12 2023

a: Đặt (d1): y=ax+b(a<>0)

Vì (d1) vuông góc với (d) nên 3a=-1

=>\(a=-\dfrac{1}{3}\)

Vậy: (d1): \(y=-\dfrac{1}{3}x+b\)

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{3}x+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-\dfrac{1}{3}x=-b\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\\dfrac{x}{3}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3b\\y=0\end{matrix}\right.\)

=>A(3b;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{3}\cdot0+b=b\end{matrix}\right.\)

=>B(0;b)

\(AB=2\sqrt{10}\)

=>\(AB^2=40\)

=>\(\left(0-3b\right)^2+\left(b-0\right)^2=40\)

=>\(10b^2=40\)

=>\(b^2=4\)

=>b=2 hoặc b=-2

Vậy: (d1): y=-1/3x+2 hoặc (d1): y=-1/3x-2

b: Đặt (d2): y=ax+b

Vì (d2)//(d) nên \(\left\{{}\begin{matrix}a=3\\b\ne-5\end{matrix}\right.\)

Vậy: (d2): y=3x+b

Tọa độ C là:

\(\left\{{}\begin{matrix}y=0\\3x+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{b}{3}\end{matrix}\right.\)

=>\(C\left(-\dfrac{b}{3};0\right)\)

tọa độ D là:

\(\left\{{}\begin{matrix}x=0\\y=3x+b=3\cdot0+b=b\end{matrix}\right.\)

=>D(0;b)

\(OC=\sqrt{\left(-\dfrac{b}{3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{b}{3}\right)^2+0}=\dfrac{\left|b\right|}{3}\)

\(OD=\sqrt{\left(0-0\right)^2+\left(b-0\right)^2}=\sqrt{0^2+b^2}=\left|b\right|\)

Vì Ox\(\perp\)Oy nên OC\(\perp\)OD

=>ΔOCD vuông tại O

=>\(S_{OCD}=\dfrac{1}{2}\cdot OC\cdot OD\)

=>\(S_{OCD}=\dfrac{\dfrac{1}{2}\left|b\right|}{3}\cdot\left|b\right|=\dfrac{1}{2}\cdot\dfrac{b^2}{3}\)

Để \(S_{OCD}=6\) thì \(\dfrac{b^2}{6}=6\)

=>\(b^2=36\)

=>\(b=\pm6\)

Vậy: (d2): y=3x+6 hoặc (d2): y=3x-6

Để ΔOCD cân tại O thì OC=OD

=>\(\dfrac{\left|b\right|}{3}=\left|b\right|\)

=>\(\left|b\right|=0\)

=>b=0

Vậy: (d2): y=3x

10 tháng 3 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Qua điểm C trên trục tung có tung độ bằng 2, kẻ đường thẳng song song với Ox cắt đồ thị hàm số y = x tại D, cắt đồ thị hàm số y = 0,5x tại E.

Điểm D có tung độ bằng 2.

Thay giá trị y = 2 vào hàm số y = x ta được x = 2.

Vậy điểm D(2; 2)

Điểm E có tung độ bằng 2.

Thay giá trị y = 2 vào hàm số y = 0,5x ta được x = 4

Vậy điểm E(4; 2)

Gọi D’ và E’ lần lượt là hình chiếu của D và E trên Ox.

Ta có: OD’ = 2, OE’ = 4

Áp dụng định lí Pi-ta-go vào tam giác vuông ODD’, ta có:

O D 2 = O D ' 2 + D D ' 2 = 2 2 + 2 = 8

Suy ra: OD = 8 = 2 2

Áp dụng định lí Pi-ta-go vào tam giác vuông OEE’, ta có:

 20 O E = O E ' 2 + E E ' 2 = 4 2 + 2 2 = 20

Suy ra: OE = 20 = 2 5

Lại có: DE = CE – CD = 4 – 2 = 2

Chu vi tam giác ODE bằng: OD + DE + EO = 2 2 + 2 + 2 5

= 2 2 + 1 + 5

Diện tích tam giác ODE bằng: 1/2.DE.OC = 1/2.2.2 = 2