Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có: ^tAy+^yAz=90 (At vuông góc Az)
=> ^xAt+^mAz=90
+ Mà ^xAt=^tAy
=> ^yAz=^mAz => Az là phân giác ^yAm
a, Vì \(\widehat{xOy}+\widehat{OAz}=140^0+40^0=180^0\) mà 2 góc này ở vị trí TCP nên Az//Oy
b, Gọi Om,On lần lượt là p/g \(\widehat{xOy};\widehat{OAt}\)
Ta có \(\widehat{OAt}=180^0-\widehat{OAz}=140^0\left(kề.bù\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{mOx}=\dfrac{1}{2}\widehat{xOy}=70^0\\\widehat{nAO}=\dfrac{1}{2}\widehat{OAt}=70^0\end{matrix}\right.\Rightarrow\widehat{mOx}=\widehat{nAO}\) mà 2 góc này ở vị trí SLT nên Om//On
Do đó 2 đg p/g của \(\widehat{xOy}\) và \(\widehat{OAt}\) song song vs nhau
a, Vì \(\widehat{OAz}+\widehat{xOy}=140^0+40^0=180^0\) mà 2 góc này ở vị trí tcp nên Az//Oy
b, Vì At đối Az nên \(\widehat{OAt}=180^0-\widehat{OAz}=140^0\left(kề.bù\right)\)
Gọi Om là p/g \(\widehat{xOy}\), On là p/g \(\widehat{OAt}\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{mOx}=\dfrac{1}{2}\widehat{xOy}=70^0\\\widehat{OAn}=\dfrac{1}{2}\widehat{OAt}=70^0\end{matrix}\right.\\ \Rightarrow\widehat{mOx}=\widehat{OAn}\)
Do đó ta đc dpcm
\(A\). \(Vì\)\(O=145^0\)\(Â_1=35^0\)\(2\)\(góc\)\(này\)\(trong\)\(cùng\)\(phía\)
\(\Rightarrow Oy\)\(\text{//}\)\(Az\)
b.Phải là Vẽ tia Az' đối với tia Az. Chứng minh 2 đường thẳng phân giác của 2 góc xOy và oAz' // vs nhau chứ sao lại vuông góc
Nếu muốn vuông góc thì phải vẽ thêm tia đối của tia pg của góc OAz' (đặt tia đối đó là Am) khi đó tia đối của OAz' vuông góc vs tia đối của OAm
cho đường thẳng xy đi qua điểm A .
Trên cùng nửa mp bờ xy vẽ tia Az ,Az' sao cho Az vuông góc vs Az' .
Vẽ tia At sao cho Az là tia phân giác của góc xAm .
Chứng tỏ rằng Az' là tia phân giác của yAm
Mik ko bt làm
mà làm ra cx khá dài
vậy nhé
Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B