Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét (d1)
\(y=4mx-(m+5)\)
\(\Leftrightarrow m(4x-1)-(5+y)=0\)
Để pt đúng với mọi $m$ thì:
\(\left\{\begin{matrix} 4x-1=0\\ 5+y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{1}{4}\\ y=-5\end{matrix}\right.\)
Vậy điểm A cố định khi m thay đổi là \(\left(\frac{1}{4}; -5\right)\)
Xét (d2)
\(y=(3m^2+1)x+(m^2-9)\)
\(\Leftrightarrow m^2(3x+1)+(x-y-9)=0\)
Để pt đúng với mọi m thì \(\left\{\begin{matrix} 3x+1=0\\ x-y-9=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{1}{3}\\ y=\frac{-28}{3}\end{matrix}\right.\)
Vậy điểm B cố định khi m thay đổi là \(\left(\frac{-1}{3}; \frac{-28}{3}\right)\)
Như vậy ta có đpcm.
\(BA=\sqrt{(-\frac{1}{3}-\frac{1}{4})^2+(\frac{-28}{3}+5)^2}=\frac{\sqrt{2753}}{12}\)
a: (d1); y=4mx-(m+5)
=m(4x-1)-5
Điểm mà (d1) luôn đi qua có tọa độ là:
4x-1=0 và y=-5
=>x=1/4 và y=-5
(d2): \(y=\left(3m^2+1\right)x+m^2-4\)
=3m^2x+3x+m^2-4
=m^2(3x+1)+3x-4
ĐIểm mà (d2) luôn đi qua có tọa độ là:
3x+1=0 và y=3x-4
=>x=-1/3 và y=-1-4=-5
b: A(1/4;-5); B(-1/3;-5)
\(AB=\sqrt{\left(-\dfrac{1}{3}-\dfrac{1}{4}\right)^2+\left(-5+5\right)^2}=\dfrac{7}{12}\)
c: Để hai đường song song thì
\(\left\{{}\begin{matrix}3m^2+1=4m\\m^2-4+m+5< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(3m-1\right)=0\\m^2+m+1< >0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{3}\end{matrix}\right.\)
a) giả sử đường thẳng trên đi qua điểm cố định A ( x0 ; y0 )
\(\Rightarrow y_0=\left(m-2\right)x_0+3\) với mọi m
\(\Leftrightarrow x_0m-\left(y_0+2x_0-3\right)=0\)với mọi m
\(\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0+2x_0-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0=3\end{cases}}}\)
Vậy điểm cố định là ( 0 ; 3 )
a/ Gọi điểm cố định là N(x0;y0)
Suy ra N thuộc đồ thị hàm số y = (m-2)x+3 nên :
\(y_0=\left(m-2\right)x_0+3\Leftrightarrow mx_0-\left(2x_0+y_0-3\right)=0\)
Vì đths luôn đi qua N với mọi x,y nên :
\(\begin{cases}x_0=0\\2x_0+y_0-3=0\end{cases}\) \(\Leftrightarrow\begin{cases}x_0=0\\y_0=3\end{cases}\)
Vậy điểm cố định là \(N\left(0;3\right)\)
b,c tương tự
a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua
Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)
\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)
Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)
Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định
b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)
Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)
Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)
Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)
Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)
Điều kiện cần và đủ để đường thẳng \(\left(m-2\right)x+\left(m-1\right)y=1\) đi qua điểm cố định \(N\left(x_0;y_0\right)\)với mọi m là:
\(\left(m-2\right)x_0+\left(m-1\right)y_0=1\forall m\)
\(\Leftrightarrow mx_0-2x_0+my_0-y_0-1=0\forall m\)
\(\Leftrightarrow\left(x_0+y_0\right)m-\left(2x_0+y_0+1\right)=0\forall m\)
\(\Leftrightarrow\hept{\begin{cases}x_0+y_0=0\\2x_0+y_0+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-1\\y_0=1\end{cases}}\)
Vậy các đường thẳng \(\left(m-2\right)x+\left(m-1\right)y=1\) luôn đi qua điểm cố định N(-1; 1)
\(\text{1) Ta có: }\sqrt{x}-1< \sqrt{x}\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}< 1\\ \)
2) a) Để \(d\left|\right|d_1\) thì \(\Rightarrow\left\{{}\begin{matrix}a=a_1\\b\ne b_1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=3\\m-1\ne1\end{matrix}\right.\)
\(\Rightarrow m=3\)
\(\text{b) Ta có: }y=mx+m-1\\ \Rightarrow mx+m-1-y=0\\ \Rightarrow m\left(x+1\right)-\left(1+y\right)=0\)
Tọa độ điểm cố định đó là :
\(\left\{{}\begin{matrix}x+1=0\\1+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)
Vậy \(\forall m\) đường thẳng \(\left(d\right)\) luôn đi qua 1 điểm có tọa độ \(X\left(-1;-1\right)\)
Giả sử điểm cố định mà \(\left(d\right)\)luôn đi qua là \(M\left(x_0,y_0\right)\).
Khi đó:
\(mx_0+\left(2-3m\right)y_0+m-1=0\)đúng với mọi \(m\)
\(\Leftrightarrow m\left(x_0-3y_0+1\right)+2y_0-1=0\)đúng với mọi \(m\)
\(\Leftrightarrow\hept{\begin{cases}x_0-3y_0+1=0\\2y_0-1=0\end{cases}}\Leftrightarrow x_0=y_0=\frac{1}{2}\).
Vậy điểm cố định mà \(\left(d\right)\)luôn đi qua là \(M\left(\frac{1}{2},\frac{1}{2}\right)\).