Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A và B lần lượt là giao điểm của (d) với trục Ox và Oy
\(\left(2m-3\right)x-1=0\Rightarrow x=\frac{1}{2m-3}\Rightarrow A\left(\frac{1}{2m-3};0\right)\Rightarrow OA=\frac{1}{\left|2m-3\right|}\)
\(y=\left(2m-3\right).0-1=-1\Rightarrow B\left(0;-1\right)\Rightarrow OB=1\)
Gọi H là chân đường vuông góc hạ từ O xuống AB
Áp dụng hệ thức lượng trong tam giác vuông OAB:
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Rightarrow\frac{1}{\left(\frac{1}{\sqrt{5}}\right)^2}=\frac{1}{\frac{1}{\left(2m-3\right)^2}}+\frac{1}{1^2}\)
\(\Leftrightarrow\left(2m-3\right)^2+1=5\Rightarrow\left(2m-3\right)^2=4\Rightarrow\left[{}\begin{matrix}m=\frac{5}{2}\\m=\frac{1}{2}\end{matrix}\right.\)
2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)
Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)
\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)