Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta có:
\(y=mx+2m+1\) với mọi m
\(\Leftrightarrow m(x+2)+(1-y)=0\) với mọi m
Để điều trên đúng với mọi m thì \(\left\{\begin{matrix} x+2=0\\ 1-y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-2\\ y=1\end{matrix}\right.\)
Vây điểm \((-2;1)\) là điểm cố định luôn đi qua d khi m thay đổi
Nghĩa là luôn tồn tại một điểm cố định khi giá trị m thay đổi (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: (d1); y=4mx-(m+5)
=m(4x-1)-5
Điểm mà (d1) luôn đi qua có tọa độ là:
4x-1=0 và y=-5
=>x=1/4 và y=-5
(d2): \(y=\left(3m^2+1\right)x+m^2-4\)
=3m^2x+3x+m^2-4
=m^2(3x+1)+3x-4
ĐIểm mà (d2) luôn đi qua có tọa độ là:
3x+1=0 và y=3x-4
=>x=-1/3 và y=-1-4=-5
b: A(1/4;-5); B(-1/3;-5)
\(AB=\sqrt{\left(-\dfrac{1}{3}-\dfrac{1}{4}\right)^2+\left(-5+5\right)^2}=\dfrac{7}{12}\)
c: Để hai đường song song thì
\(\left\{{}\begin{matrix}3m^2+1=4m\\m^2-4+m+5< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(3m-1\right)=0\\m^2+m+1< >0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{3}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nghiêu Nghiêu phần b mk lm đúng rồi nhưng phần a mk chuyển quế bị sai phải là \(x^2-\dfrac{2\left(2-m\right)x}{m-1}-\dfrac{4}{x-1}=0\) mới đúng nha . bn sữa lại giúp mk .
a) ta có : \(\left(d\right):y=\dfrac{2\left(2-m\right)x}{m-1}+\dfrac{4}{m-1}\)
\(\Rightarrow\) để \(\left(d\right)\cap\left(P\right)\Leftrightarrow x^2-\dfrac{2\left(2-m\right)x}{m-1}+\dfrac{4}{m-1}=0\)
\(\Leftrightarrow\left(m-1\right)x^2-2\left(2-m\right)x+4=0\)
để \(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\Delta'>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left(2-m\right)^2-4\left(m-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m^2-4m+4-4m+4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m^2-8m+8>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left(m-4+2\sqrt{2}\right)\left(m-4-2\sqrt{2}\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left[{}\begin{matrix}m\ge4+2\sqrt{2}\\m>4-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\) vậy .....................................................................................
b) ta có : \(2\left(m-2\right)x+\left(m-1\right)y=4\)
\(\Leftrightarrow2mx-4x+my-y-4=0\)
\(\Leftrightarrow m\left(2x+y\right)+\left(-4x-y-4\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=0\\-4x-y-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\) vậy điểm cố định mà \(\left(d\right)\) đi qua khi \(m\) thay đổi là \(A\left(-2;4\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)
b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)
\(3=-5.2+b\Rightarrow b=13\)
c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)
\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)
d/ \(b=2\Rightarrow y=ax+2\)
d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)
\(\Rightarrow0=a+2\Rightarrow a=-2\)
e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)
f/ \(a=2\)
Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)
\(\Rightarrow1=2.2+b\Rightarrow b=-3\)
Bài 2:
\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)
\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)
\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)
\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a)
Gọi $(x_0, y_0)$ là điểm cố định mà $(d_1)$ với mọi $m$
Khi đó:
$mx_0+(m-2)y_0+m+2=0$ với mọi $m$
$\Leftrightarrow m(x_0+y_0+1)+(2-2y_0)=0$ với mọi $m$
\(\Rightarrow \left\{\begin{matrix} x_0+y_0+1=0\\ 2-2y_0=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y_0=1\\ x_0=-2\end{matrix}\right.\)
Vậy điểm cố định mà $(d_1)$ luôn đi qua với mọi $m$ là $(-2,1)$
-----------------
Gọi điểm cố định mà $(d_2)$ luôn đi qua với mọi $m$ là $(x_0,y_0)$
Ta có:
$(2-m)x_0+my_0-m-2=0$ với mọi $m$
$\Leftrightarrow m(y_0-x_0-1)+(2x_0-2)=0$ với mọi $m$
\(\Rightarrow \left\{\begin{matrix} y_0-x_0-1=0\\ 2x_0-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_0=1\\ y_0=2\end{matrix}\right.\)
Vậy điểm cố định cần tìm là $(1,2)$
b) Gọi $I(a,b)$ là giao điểm của $(d_1); (d_2)$
Ta có:
$ma+(m-2)b+m+2=0(1)$
$(2-m)a+mb-m-2=0(2)$
Lấy $(1)+(2)\Rightarrow a+(m-1)b=0$
Lấy $(1)-(2)\Rightarrow (m-1)a-b+m+2=0$
Từ 2 PT trên ta dễ dàng suy ra $b=\frac{m+2}{(m-1)^2+1}; a=\frac{(m+2)(1-m)}{(m-1)^2+1}$
Bằng khai triển ta thấy:
\((\frac{(m+2)(1-m)}{(m-1)^2+1}+\frac{1}{2})^2+(\frac{m+2}{(m-1)^2+1}-\frac{3}{2})^2=\frac{5}{2}\) là hằng số
Do đó điểm $I$ luôn thuộc đường tròn tâm $(\frac{-1}{2}; \frac{3}{2})$ bán kính $\sqrt{\frac{5}{2}}$ là đường tròn cố định.