K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có A,C,B,M cùng thuộc (O)

nên ACBM là tứ giác nội tiếp

=>\(\widehat{ACB}+\widehat{AMB}=180^0\)

mà \(\widehat{ACB}+\widehat{ECB}=180^0\)(hai góc kề bù)

nên \(\widehat{ECB}=\widehat{EMA}\)

Xét ΔECB và ΔEMA có

\(\widehat{ECB}=\widehat{EMA}\)

\(\widehat{CEB}\) chung

Do đó: ΔECB đồng dạng với ΔEMA

=>\(\dfrac{EC}{EM}=\dfrac{EB}{EA}\)

=>\(EC\cdot EA=EM\cdot EB\)

b: Ta có: OC=OD

=>O nằm trên đường trung trực của CD(1)

ta có: BC=BD

=>B nằm trên đường trung trực của CD(2)

Từ (1) và (2) suy ra OB là đường trung trực của CD

=>\(sđ\stackrel\frown{BC}=sđ\stackrel\frown{BD}\)

Xét (O) có

\(\widehat{CMB}\) là góc nội tiếp chắn cung CB

\(\widehat{DMB}\) là góc nội tiếp chắn cung BD

\(sđ\stackrel\frown{BC}=sđ\stackrel\frown{BD}\)

Do đó: \(\widehat{CMB}=\widehat{DMB}\)

=>MB là phân giác của góc DMC

 

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0
30 tháng 4 2017

a, Chứng minh ∆MEF:∆MOA

b, ∆MEF:∆MOA mà AO=OM => ME=EF

c, Chứng minh F là trực tâm của ∆SAB, AI là đường cao, chứng minh A,I,F thẳng hàng

d, FA.SM = 2 R 2

e,  S M H O = 1 2 OH.MH ≤  1 2 . 1 2 M O 2 = 1 4 R 2

=> M ở chính giữa cung AC

11 tháng 2 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ Tứ giác CEIF là tứ giác nội tiếp và CI là đường kính đường tròn ngoại tiếp tứ giác CEIF

Ta có: IK ⊥ KC ( góc nội tiếp chắn nửa đường tròn ngoại tiếp tứ giác CEIF)

DK ⊥ KC (góc nội tiếp chắn nửa đường tròn (O)

⇒ D; I; K thẳng hàng (1)

Ta có:

DB ⊥ BC (góc nội tiếp chắn nửa đường tròn (O)

AI ⊥ BC ( AI là đường cao của tam giác ABC)

⇒ AI // BD

DA ⊥ BA(góc nội tiếp chắn nửa đường tròn (O)

BI ⊥ BA ( BI là đường cao của tam giác ABC)

⇒ AD // BI

Xét tứ giác ADBI có: AI // BD và AD // BI

⇒ ADBI là hình bình hành

Do P là trung điểm của AB ⇒ P là trung điểm của DI

Hay D; P; I thẳng hàng (2)

Từ (1) và (2) ⇒ D; P; K thẳng hàng.