Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh ∆MEF:∆MOA
b, ∆MEF:∆MOA mà AO=OM => ME=EF
c, Chứng minh F là trực tâm của ∆SAB, AI là đường cao, chứng minh A,I,F thẳng hàng
d, FA.SM = 2 R 2
e, S M H O = 1 2 OH.MH ≤ 1 2 . 1 2 M O 2 = 1 4 R 2
=> M ở chính giữa cung AC
⇒ Tứ giác CEIF là tứ giác nội tiếp và CI là đường kính đường tròn ngoại tiếp tứ giác CEIF
Ta có: IK ⊥ KC ( góc nội tiếp chắn nửa đường tròn ngoại tiếp tứ giác CEIF)
DK ⊥ KC (góc nội tiếp chắn nửa đường tròn (O)
⇒ D; I; K thẳng hàng (1)
Ta có:
DB ⊥ BC (góc nội tiếp chắn nửa đường tròn (O)
AI ⊥ BC ( AI là đường cao của tam giác ABC)
⇒ AI // BD
DA ⊥ BA(góc nội tiếp chắn nửa đường tròn (O)
BI ⊥ BA ( BI là đường cao của tam giác ABC)
⇒ AD // BI
Xét tứ giác ADBI có: AI // BD và AD // BI
⇒ ADBI là hình bình hành
Do P là trung điểm của AB ⇒ P là trung điểm của DI
Hay D; P; I thẳng hàng (2)
Từ (1) và (2) ⇒ D; P; K thẳng hàng.
a: Xét (O) có A,C,B,M cùng thuộc (O)
nên ACBM là tứ giác nội tiếp
=>\(\widehat{ACB}+\widehat{AMB}=180^0\)
mà \(\widehat{ACB}+\widehat{ECB}=180^0\)(hai góc kề bù)
nên \(\widehat{ECB}=\widehat{EMA}\)
Xét ΔECB và ΔEMA có
\(\widehat{ECB}=\widehat{EMA}\)
\(\widehat{CEB}\) chung
Do đó: ΔECB đồng dạng với ΔEMA
=>\(\dfrac{EC}{EM}=\dfrac{EB}{EA}\)
=>\(EC\cdot EA=EM\cdot EB\)
b: Ta có: OC=OD
=>O nằm trên đường trung trực của CD(1)
ta có: BC=BD
=>B nằm trên đường trung trực của CD(2)
Từ (1) và (2) suy ra OB là đường trung trực của CD
=>\(sđ\stackrel\frown{BC}=sđ\stackrel\frown{BD}\)
Xét (O) có
\(\widehat{CMB}\) là góc nội tiếp chắn cung CB
\(\widehat{DMB}\) là góc nội tiếp chắn cung BD
\(sđ\stackrel\frown{BC}=sđ\stackrel\frown{BD}\)
Do đó: \(\widehat{CMB}=\widehat{DMB}\)
=>MB là phân giác của góc DMC