Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn \(\stackrel\frown{AB}\)
\(\stackrel\frown{AB}\) là nửa đường tròn(AB là đường kính của (O))
Do đó: \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)
⇔BC⊥AC tại C
⇔BC⊥AF tại C
⇔\(\widehat{BCF}=90^0\)
⇔\(\widehat{ECF}=90^0\)
Xét (O) có
\(\widehat{ADB}\) là góc nội tiếp chắn \(\stackrel\frown{AB}\)
\(\stackrel\frown{AB}\) là nửa đường tròn(AB là đường kính của (O))
Do đó: \(\widehat{ADB}=90^0\)(Hệ quả góc nội tiếp)
⇔AD⊥BD tại D
⇔AD⊥BF tại D
⇔\(\widehat{ADF}=90^0\)
⇔\(\widehat{EDF}=90^0\)
Xét tứ giác CEDF có
\(\widehat{FCE}\) và \(\widehat{FDE}\) là hai góc đối
\(\widehat{FCE}+\widehat{FDE}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: CEDF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
⇔C,E,D,F cùng nằm trên một đường tròn(đpcm)
A B O C D M E F K I N L
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA
Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).
a. Ta có: \(\widehat{ADB}=90^o\)(góc nội tiếp chắn nửa đường tròn) => \(\widehat{ADE}=90^o\)
Lại có: \(CH\perp AB\)tại H (gt) mà E \(\in CH\)(do E là giao điểm của BD và CH (gt)) => \(\widehat{EHA}=90^o\)
Xét tứ giác ADEH có: \(\widehat{ADE}+\widehat{EHA}=90^o+90^o=180^o\)=> tứ giác ADEH nội tiếp (DHNB) => đpcm
b.
Ta có: \(\widehat{ACB}=90^o\)(góc nội tiếp chắn nữa đường tròn) => \(\Delta ABC\)vuông tại C
=> \(S\Delta ABC=\frac{1}{2}AC\times BC=\frac{1}{2}CH\times AB\)=> CH = \(\frac{AC\times BC}{AB}\)
=> \(AC\times AH+CB\times CH=AC\times AH+CB\times\frac{AC\times BC}{AB}\)= \(AC\times(AH+\frac{BC^2}{AB})=AC\times\frac{(AH\times AB+BC^2)}{AB}\)(1)
Áp dụng hệ thức lượng trong \(\Delta ABC\)vuông tại C với đường cao CH ta được: AH \(\times AB=AC^2\)(2)
Áp dụng định lý pitago trong \(\Delta ABC\)vuông tại C ta được: \(AC^2+BC^2=AB^2\)(3)
Thế (2) và (3) vào (1) ta được : \(AC\times AH+CB\times CH=AB\times AC\)(ĐPCM)
c. Gọi K là điểm chính giữa cung AB (K nằm cùng phía với C so với bờ AB) => K là điểm cố định và \(KO\perp AB\)tại O => KO // CH => \(\widehat{KOC}=\widehat{KOM}=\widehat{HCO}\)(So le trong)
Nối K với M
Xét \(\Delta KOM\)và \(\Delta OCH\)có:
+ KO = OC = R
+ \(\widehat{KOM}=\widehat{HCO}\)(cmt)
+ OM = CH (gt)
=> \(\Delta KOM=\Delta OCH\)(c.g.c) => \(\widehat{KMO}=\widehat{OHC}=90^o\Rightarrow\Delta KOM\)vuông tại M => M \(\in(I,\frac{OK}{2})\)cố định (trong đó I là trung điểm của OK)
a) Vì TO là đường kính \(\Rightarrow\angle TMO=90\) mà \(M\in\left(O\right)\Rightarrow TM\) là tiếp tuyến của (O)
b) Xét \(\Delta TMC\) và \(\Delta TDM:\) Ta có: \(\left\{{}\begin{matrix}\angle MTDchung\\\angle TMC=\angle TDM\end{matrix}\right.\)
\(\Rightarrow\Delta TMD\sim\Delta TCM\left(g-g\right)\Rightarrow\dfrac{TC}{TM}=\dfrac{TM}{TD}\Rightarrow TC.TD=TM^2\)
c) Vì đường tròn đường kính TO có tâm I và đường tròn (O) cắt nhau tại M và N \(\Rightarrow\) IO là trung trực của MN \(\Rightarrow MN\bot TO\)
mà \(\Delta TMO\) vuông tại M \(\Rightarrow TM^2=TE.TO\) (hệ thức lượng)
mà \(TC.TD=TM^2\Rightarrow TC.TD=TE.TO\Rightarrow\dfrac{TC}{TE}=\dfrac{TO}{TD}\)
Xét \(\Delta TEC\) và \(\Delta TDO:\) Ta có: \(\left\{{}\begin{matrix}\angle OTDchung\\\dfrac{TC}{TE}=\dfrac{TO}{TD}\end{matrix}\right.\)
\(\Rightarrow\Delta TEC\sim\Delta TDO\left(c-g-c\right)\Rightarrow\angle TEC=\angle TDO\Rightarrow ODCE\) nội tiếp