K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2023

a: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB và MO là phân giác của \(\widehat{AMB}\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

b: MO là phân giác của \(\widehat{AMB}\)

=>\(\widehat{AMO}=\widehat{BMO}=\dfrac{60^0}{2}=30^0\)

Xét ΔOAM vuông tại A có

\(tanAMO=\dfrac{OA}{AM}\)

=>\(\dfrac{5}{AM}=tan30=\dfrac{\sqrt{3}}{3}\)

=>\(AM=5\sqrt{3}\)(cm)

=>\(C_{MAB}=3\cdot AM=15\sqrt{3}\left(cm\right)\)

c: Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó: ΔABC vuông tại B

=>AB\(\perp\)BC(1)

OA=OB

MA=MB

Do đó: OM là đường trung trực của AB

=>OM vuông góc AB(2)

Từ (1),(2) suy ra OM//BC

Xét tứ giác BMOC có

BC//OM

nên BMOC là hình thang