K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

Ta có: Vì xy//Ab => góc BAC = góc DCA ( 2 góc so le trong)

Vì AD//BC => góc DAC = góc BCA ( 2 góc so le trong)

Xét \(\Delta\) ABC và \(\Delta\) CDA có:

- góc BAC = góc DCA (chứng minh trên)

- AC chung

- góc DAC = góc BCA (chứng minh trên)

=> \(\Delta\) ABC = \(\Delta\) CDA (g.c.g) A B C D y x

14 tháng 12 2017

sai roi

Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minha/ ΔABM=ΔECMb/ AB//CEBài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BCa/ Chứng minh : ΔAKB=ΔAKCb/ Chứng minh: AK vuông góc với BCc/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AKBài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D...
Đọc tiếp

Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh

a/ ΔABM=ΔECM

b/ AB//CE

Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC

a/ Chứng minh : ΔAKB=ΔAKC

b/ Chứng minh: AK vuông góc với BC

c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA

a/ Chứng minh ΔABM=ΔDCM

b/ Chứng minh AB//DC

c/ Chứng minh AM vuông góc với BC

d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o

Bài 4: Cho ΔABC vuông tại A có góc B=30o

a/ Tính góc C

b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D

c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD

d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD

e/ Tính góc AKC.

Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd

a/ Chứng minh AD=BC

b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD

c/ Chứng minh OE là phân giác của góc xOy

2
11 tháng 12 2016

Bài 1: Ta có hình vẽ sau:

B A C M E

a)Xét ΔABM và ΔECM có:

BM = CM (gt)

\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)

MA = ME (gt)

=> ΔABM = ΔACM (c.g.c) (đpcm)

b) Vì ΔABM = ΔECM (ý a)

=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên

=> AB // CE (đpcm)

Bài 5: Ta có hình vẽ sau:

 

 

 

 

O A B D C x y E

a) Vì OA = OB (gt) và AC = BD (gt)

=> OC = OD

Xét ΔOAD và ΔOBC có:

OA = OB (gt)

\(\widehat{O}\) : Chung

OC = OD (cm trên)

=> ΔOAD = ΔOBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)(đpcm)

b) Vì ΔOAD = ΔOBC(ý a)

=> \(\widehat{OBC}=\widehat{OAD}\)\(\widehat{ODA}=\widehat{OCB}\)

(những cặp góc tương ứng)

Xét ΔEAC và ΔEBD có:

\(\widehat{OBC}=\widehat{OAD}\) (cm trên)

AC = BD (gt)

\(\widehat{ODA}=\widehat{OCB}\) (cm trên)

=> ΔEAC = ΔEBD (g.c.g) (đpcm)

c) Vì ΔEAC = ΔEBD (ý b)

=> EA = EB (2 cạnh tương ứng)

Xét ΔOAE và ΔOBE có:

OA = OB (gt)

\(\widehat{OBC}=\widehat{OAD}\) (đã cm)

EA = EB (cm trên)

=> ΔOAE = ΔOBE (c.g.c)

=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)

=> OE là phân giác của \(\widehat{xOy}\)

 

11 tháng 12 2016

Toán hình dài, bn k nên đăng nhiều bài 1 lúc

nên đăng từng bài thui nha!!!

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc...
Đọc tiếp

Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.

Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.

Bài 3: Cho  ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b)  DBC =  BDE

Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.

Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD  BC

Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a)  ABM =  DCM. b) AB // DC. c) AM  BC

Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.

Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.

Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?

Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.

11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN

2
18 tháng 3 2020
làm đc câu nào thì làm
20 tháng 8 2021

tự nghĩ đi