Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik chỉ hỉu đề thế này thôi sai thì bn nhờ thầy Akai Haruma giúp nha
a) MAC đều => góc MAC = 60, MBD đều => góc MBD = 60
=> AOB là tam giác cân ( vì có 2 góc ở đáy = nhau )
mà 2 góc ở đáy lại = 60 => tam giác đều
b) AOB đều => 3 cạnh bằng nhau => AB = OB
AB = AM + MB
OB = OD + DB
mà AB = OB, MB = DB
=> AM = OD, mà AM = MC => MC = OD
MD = OC chứng minh tương tự
c) Xét tam giác ABD và tam giác BOC:
AB = BO
góc ABD = góc BOC = 60
BD = OC
=> ABD = BOC ( c.g.c )
=> AD = BC
d) ABD = BOC ( cm câu c ) => góc BAD = góc OBC
Ta có : MC = OD, MD = OC ( cm câu b ) => MCOD là hbh => MC // OD <=> MC // OB => góc MCK = góc OBC
=> góc BAD = góc MCK
Vì AD = BC, AI = 1/2 AD, CK = 1/2 BC => AI = CK
Xét tam giác MAI và tam giác MCK:
MA = MC
góc BAD = góc MCK
AI = CK
=> MAI = MCK ( c.g.c ) => MI = MK
e) góc CEA = góc BED (đối đỉnh)
Xét tam giác BED: BED + EDB + EBD = 180
Xét tam giác ABD: BAD + ABD + ADB = 180 <=> BAD + ADB = 120
mà có góc EBD = góc BAD ( vì tam giác ABD = tam giác BOC )
=> EDB + EBD = 120 => BED = 60 => CEA = 60
A C B D E M N P
1)
- Xét tam giác EDC có :
+ PE = PD (GT)
+ NE = NC (GT)
=> PN là đường trung bình của tam giác EDC => \(PN=\frac{1}{2}CD\) (1)
-Xét tam giác EAC có:
+ NE = NC (GT )
+ ME = MA (GT )
=> NM là đường trung bình của tam giác EAC => \(MN=\frac{1}{2}AC\) (2)
- Xét tam giác EAD có :
+ ME = MA (GT)
+ PE =PD (GT )
=> MP là đường trung bình của tam giác EAD => \(MP=\frac{1}{2}AD\) (3)
-Từ 1 , 2 , 3 và AD = DC = CA (GT)
=> PN = NM = MP hay tam giác MNP đều
A B C D E M N P K
1) Vì P là trung điểm của DE ; N là trung điểm của EC => PN là đường trung bình của tam giác EDC
=> \(PN=\frac{1}{2}DC\)(1)
Vì M là trung điểm của AE ; N là trung điểm của EC => MN là đường trung bình của tam giác AEC
=> \(MN=\frac{1}{2}AC\) (2)
Vì P là trung điểm của DE ; M là trung điểm của AE => PM là đường trung bình của tam giác ADE
=> \(PM=\frac{1}{2}AD\)(3)
Mà \(\frac{1}{2}AD=\frac{1}{2}DC=\frac{1}{2}AC\) Nên từ (1) ; (2) \(\Rightarrow MN=NP=MP\) Hay tam MNP đều (đpcm)
2) Đang nghĩ
A B C D E H I O M N K d F G x y Q S
Gọi Q là điểm đối xứng với A qua M, S là điểm đối xứng với E qua M
Lấy giao điểm của DB và EC kéo dài là F, gọi G là trung điểm của OF. Nối F với I.
Dễ dàng chứng minh được: \(\Delta\)AMC=\(\Delta\)BMQ (c.g.c) => ^MAC=^MQB
Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)
Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)
Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD
=> \(\Delta\)ABQ=\(\Delta\)EAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN
Xét \(\Delta\)ABM và \(\Delta\)EAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE
=> \(\Delta\)ABM=\(\Delta\)EAN (g.c.g) => AM=EN (2 cạnh tương ứng)
Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE
\(\Delta\)AEC=\(\Delta\)ABD (c.g.c) => EC=BD
\(\Delta\)EMC=\(\Delta\)SMB (c.g.c) => EC=SB
=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của \(\Delta\)SDB
=> ^SBF=2. ^BDS .
\(\Delta\)EMC=\(\Delta\)SMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)
=> ^EFD = 2.^BDS (3)
Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I
Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)
Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)
Mà MN là đường trung bình của tam giác EDS => MN//FI (*)
Xét \(\Delta\)OIF:
K là trung điểm OI, G là trung điểm OF => KG là đường trung bình \(\Delta\)OIF => KG//FI (**)
Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF
FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE
Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF
=> G,M,N thẳng hàng (***)
Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).
ΔAMC=ΔBMQ (c.g.c) => ^MAC=^MQB
Suy ra AC // BQ (2 góc so le trong bằng nhau) => ^BAC+^ABQ=1800 (1)
Ta có: ^BAC+^EAD= 2.^BAC + ^CAE + ^DAB = (^BAC+^CAE) + (^BAC+^DAB) = ^BAE+^CAD=1800 (2)
Từ (1) và (2) => ^BAC+^ABQ=^BAC+^EAD => ^ABQ=^EAD
=> ΔABQ=ΔEAD (c.g.c) = >^BAQ=^AED (2 góc tương ứng) hay ^BAM=^AEN
Xét ΔABM và ΔEAN: ^BAM=^AEN; ^ABM=^EAN (Cùng phụ với ^BAH); AB=AE
=> ΔABM=ΔEAN (g.c.g) => AM=EN (2 cạnh tương ứng)
Tương tự ta chứng minh AM=DN => DN=EN => N là trung điểm của DE
ΔAEC=ΔABD (c.g.c) => EC=BD
ΔEMC=ΔSMB (c.g.c) => EC=SB
=> BD=SB => Tam giác DBS cân tại B. Do ^SBF là góc ngoài của ΔSDB
=> ^SBF=2. ^BDS .
ΔEMC=ΔSMB => ^MEC=^MSB => EC//SB hay EF//SB => ^SBF=^EFD (So le trong)
=> ^EFD = 2.^BDS (3)
Dễ thấy Bx và Cy là phân giác 2 góc ngoài của tam giác FBC. Chúng cắt nhau tại I
Nên FI là phân giác của ^CFB hay ^EFD => ^DFI=1/2 ^EFD (4)
Từ (3) và (4) => ^BDS=^DFI => DS//FI (2 góc so le trong)
Mà MN là đường trung bình của tam giác EDS => MN//FI (*)
Xét ΔOIF:
K là trung điểm OI, G là trung điểm OF => KG là đường trung bình ΔOIF => KG//FI (**)
Xét tứ giác BOCF: M; G lần lượt là trung điểm của 2 đường chéo BC và OF
FB giao CO tại D; FC giao BO tại E; N là trung điểm của DE
Tứ đó ta có: 3 điểm G;M;N cùng nằm trên đường thẳng Gauss của tứ giác BOCF
=> G,M,N thẳng hàng (***)
Từ (*); (**) và (***) => 3 điểm M;N;K thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
a) ABCD là hình thang nên AB//CD
CD=2AB ==>AB/CD=1/2
AB//CD, áp dụng định lý Ta-let, ta có
OA/OC=OB/OD=AB/CD=1/2
=>OA/OC=1/2 => OC=2OA
B) Ta có : OA/OC=OB/OD=AB/CD=1/2
==> OD/OB = 2 ==>OD = 2OB
*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);
OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD
c)
Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB
MI//AB, áp dụng hệ quả của định lý Ta-let, ta có
MI/AB = DM/AD = DI/IB (1)
IN//AB, áp dụng định lý Ta-let, ta có
CN/BC=DI/IB (2)
Từ (1) và (2), ta có
DM/AD=CN/BC
d)
KN//AB, áp dụng hệ quả của định lý Ta-let, ta có
KN/AB=CN/BC
Ta có :KN/AB=CN/BC và MI/AB=DM/AD
mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI
a) MAC đều => góc MAC = 60, MBD đều => góc MBD = 60
=> AOB là tam giác cân ( vì có 2 góc ở đáy = nhau )
mà 2 góc ở đáy lại = 60 => tam giác đều
b) AOB đều => 3 cạnh bằng nhau => AB = OB
AB = AM + MB
OB = OD + DB
mà AB = OB, MB = DB
=> AM = OD, mà AM = MC => MC = OD
MD = OC chứng minh tương tự
c) Xét tam giác ABD và tam giác BOC:
AB = BO
góc ABD = góc BOC = 60
BD = OC
=> ABD = BOC ( c.g.c )
=> AD = BC
d) ABD = BOC ( cm câu c ) => góc BAD = góc OBC
Ta có : MC = OD, MD = OC ( cm câu b ) => MCOD là hbh => MC // OD <=> MC // OB => góc MCK = góc OBC
=> góc BAD = góc MCK
Vì AD = BC, AI = 1/2 AD, CK = 1/2 BC => AI = CK
Xét tam giác MAI và tam giác MCK:
MA = MC
góc BAD = góc MCK
AI = CK
=> MAI = MCK ( c.g.c ) => MI = MK
e) góc CEA = góc BED (đối đỉnh)
Xét tam giác BED: BED + EDB + EBD = 180
Xét tam giác ABD: BAD + ABD + ADB = 180 <=> BAD + ADB = 120
mà có góc EBD = góc BAD ( vì tam giác ABD = tam giác BOC )
=> EDB + EBD = 120 => BED = 60 => CEA = 60
hinh bn oi