K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HN
15 tháng 5 2016
a, xét tam giác ABC và tam giác DAB có:
góc BAC = góc ADB=90 độ
góc ABC = góc BAD( so le trong của Ax//BC)
do đó: tam giác ABC đồng dạng với tam giác DAB(g-g)
b, áp dụng định lí pytago vào tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)
theo cm câu a : tam giác ABC đồng dạng với tam giác DAB
=>\(\frac{AB}{AD}=\frac{BC}{AB}=\frac{AC}{BD}\)
\(\Rightarrow AD=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)
\(BD=\frac{AB.AC}{BC}=\frac{15.20}{25}=12cm\)
c, \(S_{ABD}=\frac{1}{2}.AD.BD=\frac{1}{2}.9.12=54cm^2\)
Gọi giao của CO với DB là E
a: Xét ΔOAC vuông tại A và ΔOBE vuông tại B có
OA=OB
góc AOC=góc BOE
=>ΔOAC=ΔOBE
=>AC=BE và OD=OE
Xét ΔACO vuông tại A và ΔBDO vuông tại B có
góc ACO=góc BDO(=góc DCO)
=>ΔACO đồng dạng với ΔBDO
b: Xét ΔDCE có
DO vừa là đường cao, vừa là trung tuyến
=>ΔDCE cân tại D
=>DE=DC
=>DC=DB+BE=DB+AC
c; Xét ΔNAC vàΔNDB có
góc NAC=góc NDB
góc ANC=góc DNB
=>ΔNAC đồng dạng với ΔNDB
=>NA/ND=AC/BD=CM/MD
=>MN//AC