Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tự vẽ hình ha!
Cm:
a) Xét \(\Delta OAD\)và \(\Delta OCB\)có:
OA=OC (gt)
OD=OB (gt)
\(\widehat{O}\)chung
=>\(\Delta OAD\)=\(\Delta OCB\)(c.g.c)
=>AD=BC (2 cạnh tương ứng) (Đpcm)
b) Vì\(\Delta OAD\)=\(\Delta OCB\)(cmt) => \(\widehat{ODA}=\widehat{OBC};\widehat{OAD}=\widehat{OCB}\)(2 góc t/ứ)
Ta có: \(\widehat{OAD}+\widehat{DAB}=180^0\)(2 góc kề bù)
\(\Rightarrow\widehat{DAB}=180^0-\widehat{OAD}\)
Lại có: \(\widehat{OCB}+\widehat{BCD}=180^0\)(2 góc kề bù)
\(\Rightarrow\widehat{BCD}=180^0-\widehat{OCB}\)
Mà \(\widehat{OAD}=\widehat{OCB}\)(cmt)
\(\Rightarrow\widehat{DAB}=\widehat{BCD}\)hay \(\widehat{IAB}=\widehat{ICD}\)
Ta có: OA=OC;OB=OD (GT)
=> OB-OA=OD-OC
=>AB=CD
Xét\(\Delta AIB\) và\(\Delta CID\)có:
AB=CD (cmt)
\(\widehat{IAB}=\widehat{ICD}\)(cmt)
\(\widehat{ODA}=\widehat{OBC}\)(cmt)
=>\(\Delta AIB\)=\(\Delta CID\)(g.c.g)
=>AI=IC; IB=ID (đpcm)
c) Xét \(\Delta OID\)và\(\Delta OIB\)có:
OD=OB (gt)
ID=IB (cmt)
\(\widehat{ODA}=\widehat{OBC}\)(cmt)
=>\(\Delta OID\)=\(\Delta OIB\)(c.g.c)
=>\(\widehat{DOI}=\widehat{BOI}\)
=> OI là tia pg của góc xOy (đpcm)
Câu hỏi của Phạm Tuấn Kiệt - Toán lớp 7 - Học toán với OnlineMath
GT | ΔABC, \(\widehat{A}< 90^o\)
Ax ⊥ AB, AD = AB
Ay ⊥ AC, AE = AC
KL | a, BE=CD
b, BE ⊥ CD
Giải:
a, Vì Ay ⊥ AB
⇒ A1 = 90o <1>
Ax ⊥ AC
⇒ A2 = 90o <2>
Từ <1>,<2> ⇒ A1=A2
Mà \(\widehat{DAC}\) = \(\widehat{A_1}+ \widehat{A_3}\);
\(\widehat{EAC} = \widehat{A_2} + \widehat{A_3}\).
⇒ \(\widehat{DAC}\) = \(\widehat{EAC}\)
Xét ΔDAC và ΔEAB có:
AD = AB (gt)
A1= A2= \(90^o\)
AE =AC (gt)
⇒ ΔDAC = ΔEAB(c.g.c)
b, Vì ΔDAC = ΔEAB(CMT)
⇒ BE⊥ CD( 2 cạnh tương ứng)
Chức bạn học tốt nha!
x C A O B K y D
Gọi K là giao điểm của CO và BD
Xét \(\Delta\)AOC và \(\Delta\)BOK có :
AO = BO(gt)
\(\widehat{OAC}=\widehat{OBK}\left(=90^0\right)\)
\(\widehat{O}\)chung
=> \(\Delta\)AOC = \(\Delta\)BOK(g.c.g)
=> OC = OK(hai cạnh tương ứng)
AC = BK(hai cạnh tương ứng)
Xét \(\Delta\)COD và \(\Delta\)KOD có :
CO = KO(gt)
\(\widehat{OCD}=\widehat{OKD}\left(=90^0\right)\)
OD cạnh chung
=> \(\Delta\)COD = \(\Delta\)KOD(c.g.c)
=> CD = KD(hai cạnh tương ứng)
Do đó : CD = DB + BK = DB + AC