Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)
Theo đề ra: \(AM=\frac{1}{3}MB\)
\(\rightarrow AM+MB=AB\)
\(\rightarrow\frac{1}{3}MB+\frac{3}{4}MB=AB\)
\(\rightarrow MA=8:4=2\)
\(MB=8-2=6\)
\(MC=\sqrt{MA^2+CA^2}=\sqrt{13}\)
\(MD=\sqrt{MB^2+BD^2}=2\sqrt{13}\)
\(CD=\sqrt{MC^2+MD^2}=\sqrt{65}\)
\(b)\)
\(MC^2+MD^2=13+52=65\)
\(CD^2=65\)
\(\rightarrow MC^2+MD^2=CD^2\)
\(\rightarrow MCD\text{ }\)\(\text{là tam giác vuông}\)
Giải:
Ta có M thuộc AB
=> AM + MB = AB
hay\(\frac{1}{3}\) MB + MB = 8
MB (\(\frac{1}{3}\)+ 1) = 8
MB .\(\frac{4}{3}\) = 8
MB = 8 :\(\frac{4}{3}\)
MB = 6 (cm)
Áp dụng định lý Py-ta-go vào tam giác MDB vuông tại B , có :
MB2 + BD2 = MD2
hay 62 + 42 = MD2
=> MD2 = 52
MD = \(2\sqrt{13}\) (cm)
LẠi có : AM = 1/3 .MB
hay AM = 1/3 . 6
AM = 2 (cm)
Áp dụng định lý Py-ta-go vào tam giác AMC vuông tại A , có :
AM2 + AC2
= BM2
hay 22 + 32 = BM2
=> BM2 = 13
BM= \(\sqrt{13}\) (cm)
:D
a: Gọi giao của CM và BD là K
Xet ΔMAC vuông tại A và ΔMBK vuông tại B có
MA=MB
góc AMC=góc BMK
=>ΔMAC=ΔMBK
=>MK=MC
Xét ΔDCK có
DM vừa là đường cao, vừa là trung tuyến
=>ΔDCK cân tại D
=>DC=DK
=>DC=DB+BK=AC+DB
b: Xét ΔMBD vuông tại B và ΔMHD vuông tại H có
DM chung
góc BDM=góc HDM
=>ΔMBD=ΔMHD
=>DH=DB; MH=MB
=>MD là trung trực của BH
=>BH vuông góc MD
c: Xét ΔHAB có
HM là trung tuyến
HM=AB/2
=>ΔHAB vuông tại H
Giải:
Ta có M thuộc AB
=> AM + MB = AB
hay \(\frac{1}{3}\)MB + MB = 8
MB (\(\frac{1}{3}\)+ 1) = 8
MB . \(\frac{4}{3}\)= 8
MB = 8 : \(\frac{4}{3}\)
MB = 6 (cm)
Áp dụng định lý Py-ta-go vào tam giác MDB vuông tại B , có :
MB2 + BD2 = MD2
hay 62 + 42 = MD2
=> MD2 = 52
MD = \(2\sqrt{13}\)(cm)
LẠi có : AM = 1/3 .MB
hay AM = 1/3 . 6
AM = 2 (cm)
Áp dụng định lý Py-ta-go vào tam giác AMC vuông tại A , có :
AM2 + AC2 = BM2
hay 22 + 32 = BM2
=> BM2 = 13
BM= \(\sqrt{13}\)(cm)