K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Hai điểm C và D nằm trên đường tròn (A; 3cm) nên CA = DA = 3cm

Hai điểm C và D nằm trên đường tròn (B; 2cm) nên CB = DB = 2cm

b) Trên tia BA có: BI = 2cm, AB = 4cm

Vì 2cm < 4cm nên điểm I nằm giữa A và B (1).

Ta có: AI + IB = AB

=> AI = AB - IB = 4 - 2 = 2cm

Do đó: AI = BI (2)

Từ (1) và (2) suy ra I là trung điểm của đoạn thẳng AB.

c) Trên tia AB có AI = 2cm, AK = 3cm. Vì AI < AK nên điểm I nằm giữa hai điểm A và K.

Ta có: AI + IK = AK

=> IK = AK - AI = 3 - 2 = 1cm

19 tháng 2 2020

trên hình 49?????

1. Cho tam giác PMN có góc P bằng 80 độ , PM=PN. Phân giác của góc P cắt MN tại Ia.Tính góc PMN , Góc PNM . Chứng minh PI là trung trực của MNb. Gọi d là trung trực của PM , d cắt MN tại E . Tính góc MPEc.Trên tia PE lấy điểm F sao cho PF=NE . Chứng minh MF=PEd.Gọi K là trung điểm của EF. Chứng minh góc KMF= góc IPE2.( Vẽ đường trung trực của đoạn thẳng bằng compa và thước thẳng )a.Để vẽ đường trung...
Đọc tiếp

1. Cho tam giác PMN có góc P bằng 80 độ , PM=PN. Phân giác của góc P cắt MN tại I

a.Tính góc PMN , Góc PNM . Chứng minh PI là trung trực của MN

b. Gọi d là trung trực của PM , d cắt MN tại E . Tính góc MPE

c.Trên tia PE lấy điểm F sao cho PF=NE . Chứng minh MF=PE

d.Gọi K là trung điểm của EF. Chứng minh góc KMF= góc IPE

2.( Vẽ đường trung trực của đoạn thẳng bằng compa và thước thẳng )

a.Để vẽ đường trung trực của đoạn thằng AB như sau : 

- LẦn lượt lấy A, B làm tâm và vẽ các đường tròn bán kính r ( r>AB/2) , hai đường tròn cắt nhau tại I , K

-Đường thẳng IK cắt AB tại H chính là đường trung trực của AB

b.Chứng minh IK là đường trung trực của AB

3.Cho tam giác ABC . Đường trung trực a của đoạn BC và đường trung trực b của đoạn AC cắt nhau tại O

a.Chứng minh OA=OB=OC

CÁC BẠN GIẢI GIÚP MÌNH NHÉ . MÌNH CẦN GẤP . CẢM ƠN . GIẢI ĐƯỢC CÂU NÀO THÌ GIẢI NHA . THANKS 

 

b. Gọi M là trung điểm của đoạn AB . Chứng minh OM là đường trung trực của đoạn thẳng AB

0
15 tháng 7 2023

a) Xét △ABM vuông tại A và △DBM vuông tại D có:

BM chung

AB=DB=3cm(gt)

=> △ABM=△DBM (cạnh huyền-cạnh góc vuông) => AM=DM(2 cạnh t/ứ)

b) Xét △AMN và △DMC có:

AMN=DMC(2 góc đối đỉnh)

AM=DM(cmt)

MAN=MDC(gt)

=> △AMN=△DMC(g.c.g) => MN=MC(2 cạnh tướng ứng) => △MCN cân tại M

c) Vì △AMN=△DMC(cmt) => AN=DC(2 cạnh tương ứng)

Ta có AB=BD;AN=DC;BN=AN+AB;BC=BD+DC => BN=BC=> △BNC cân tại B

Vì △ABM=△DBM(cmt)=> ABM=DBM=> NBK=CBK (A thuộc BN; D thuộc BC;M thuộc BK) => BK là phân giác NBC

=> Trong △BNC cân tại B, BK là đường phân giác, đường trung trực, đường trung tuyến, đường cao,... (t/c) => BK là đường trung trực của CN

d) Áp dụng định lý Pytago vào △ABC vuông tại A có: AB2+AC2=BC^2

=> 9+16=25=BC^2 (cm) => BC = 5 cm

Ta có BD+DC=BC;BD=3cm=> DC=2cm

Ta có AN=DC(cmt) => AN=2cm

Áp dụng định lý Pytago vào △ANC vuông tại A có:

AN^2+AC^2=NC^2

=> 4+16=NC^2

=> NC= căn 20 = 2 x căn 5 (cm)

Vì BK là trung trực NC => K là trung điểm NC => KC = 1/2 NC = căn 5 (cm)

Áp dụng định lý Pytago vào △BKC vuông tại K có:

BC^2=BK^2+KC^2 => BK^2=BC^2+KC^2=25-5=20cm => BK=căn 20=2 nhânnhân căn 5 (cm)

5 tháng 11 2017

Bạn tự vẽ hình nhé!

Xét \(\Delta\)CAB và DAB có:

AC=AD(=2cm)

CB=DB(=3cm)

AB là cạnh chung

\(\Rightarrow\)\(\Delta\)CAB=\(\Delta\)DAB (c.c.c)

\(\Rightarrow\)\(\widehat{A_1}\)=\(\widehat{A_2}\)

Vậy AB là tia phân giác của\(\widehat{CAD}\)(đpcm)