Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) M đối xứng với D qua AB nên MB=BD và AB vuông góc với MD. Ta thấy Am vừa là đường trung tuyến vừa là đường trung trực nên tam giác AMD cân ở A nên AM=AD
Tương tự ta chứng minh được tam giác AEM cân ở A nên AM=AE
=>AE=AD=AM
b)Gọi I là điểm giao của AB và MD, K là giao của AC và ME
tam giác AMD cân có AB là đường trung trực nên cũng là đường phân giác của góc MAD nên góc DAB=gócBAM
tam giác MAE cũng vậy nên góc MAC=gócEAC
vậy góc DAE=góc DAB+ góc BAM + góc MAC +góc CAE= 2(góc BAM+ goc MAC)=2.70=140 độ
bài 2
a) Tương tự phần a câu 1, vì H đối xứng với M qua BC lên tam giác BHM là tam giác cân ở B nên BH=BM
và tương tự tam giác CHM cân ở C nên CM=CH
2 tam giác BHC và BMC có cạnh chung BC và 2 cạnh tương ứng bằng nhau(BH=BM,CH=CM) nên là tam giác bằng nhau
b)H là trực tâm lên HA=HC nên góc HAC=góc HCA, tương tự HA=HB nên góc HAB=góc HBA=> góc HCA+góc HBA= góc HAC+ góc HAB=60
xét tam giác ABC
góc BAC+ (góc HCA+góc HCB)+(góc HBA+góc HBC)=180 =>góc HCB+ góc HBC= 60=> góc BHC=180-60=120
tam giác BHC bằng tam giác BMC nên góc BMC=góc BHC= 120
gọi L là giao điểm của BD và AC.
Có: BL=LD, AL=LC => ABCD là hình bình hành.
Lại có ^A=90 => ABCD là HCN (ĐPCM)
b/ xét tam giác BCI và IED có:
BC=DE(.....)
^BCI = ^IDE=90 độ
CI = ID (.....)
=> tg BCI = tg IDE (c,g,c)
=> BI = IE (ĐPCM)
6 cm nha bn