Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu này hơi kì, vì đề đã nói rõ tiếp tuyến cắt Oz tại M, thế thì M chạy trên tia Oz còn hỏi gì nữa???
mình nghĩ câu này, nên "giấu" cái Oz đi, mà cho M là trung điểm của CD, làm thế nhé
Thấy tứ giác ABDC là hình thang vuông, có OM là đường trung bình (qua trung điểm 2 cạnh bên)
=> OM // Ax // By => M chạy trên tia qua O và // Ax (chính là Oz)

A H O B N C M D x y
Ax \(\perp\) AB
By \(\perp\) AB
Suy ra: Ax // By hay AC // BD
Trong tam giác BND, ta có AC // BD
Suy ra: \(\frac{ND}{NA}=\frac{BD}{AC}\)(hệ quả định lí Ta-lét) (1)
Theo tính chất hai tiếp tuyến cắt nhau, ta có:
AC = CM và BD = DM (2)
Từ (1) và (2) suy ra: \(\frac{ND}{NA}=\frac{MD}{MC}\)
Trong tam giác ACD, ta có: \(\frac{ND}{NA}=\frac{MD}{MC}\)
Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)
Mà: AC \(\perp\) AB (vì Ax \(\perp\) AB)
Suy ra: MN \(\perp\) AB
b. Trong tam giác ACD, ta có: MN // AC
Suy ra: \(\frac{MN}{AC}=\frac{DN}{DA}\) (hệ quả định lí Ta-lét) (3)
Trong tam giác ABC, ta có: MH // AC (vì M, N, H thẳng hàng)
Suy ra: \(\frac{HN}{AC}=\frac{BN}{BC}\) (hệ quả định lí Ta-lét) (4)
Trong tam giác BDN, ta có: AC // BD
Suy ra: \(\frac{ND}{NA}=\frac{BN}{NC}\) (hệ quả định lí Ta-lét)
\(\Rightarrow\frac{ND}{\left(DN+NA\right)}=\frac{BN}{\left(BN+NC\right)}\Leftrightarrow\frac{ND}{DA}=\frac{BN}{BC}\left(5\right)\)
Từ (3), (4) và (5) suy ra: MN/AC = HN/AC => MN = HN

O A H B C M y D x N
\(Ax\perp AB\)
\(By\perp AB\)
Suy ra: Ax // By hay AC // BD
Trong tam giác BND, ta có AC // BD
Suy ra: \(\frac{ND}{NA}=\frac{BD}{AC}\) ( hệ quả định lí Ta-lét ) (1)
Theo tính chất hai tiếp tuyến cắt nhau, ta có:
AC = CM và BD = DM (2)
Từ (1) và (2) suy ra: \(\frac{ND}{NA}=\frac{MD}{MC}\)
Trong tam giác ACD, ta có: \(\frac{ND}{NA}=\frac{MD}{MC}\)
Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)
Mà: \(AC\perp AB\) ( vì \(Ax\perp AB\) )
Suy ra: \(MN\perp AB\)
b. Trong tam giác ACD, ta có: MN // AC
Suy ra: \(\frac{MN}{AC}=\frac{DN}{DA}\)( hệ quả định lí Ta-lét ) (3)
Trong tam giác ABC, ta có: MH // AC ( vì M, N, H thẳng hàng )
Suy ra: \(\frac{HN}{AC}=\frac{BN}{BC}\)( hệ quả định lí Ta-lét ) (4)
Trong tam giác BDN, ta có: AC // BD
Suy ra: \(\frac{ND}{NA}=\frac{BN}{NC}\) ( hệ quả định lí Ta-lét )
\(\Rightarrow\frac{ND}{\left(DN+NA\right)}=\frac{BN}{BN+NC}\Leftrightarrow\frac{ND}{DA}=\frac{BN}{BC}\left(5\right)\)
Từ (3), (4) và (5) suy ra: \(\frac{MN}{AC}=\frac{HN}{AC}\Rightarrow MN=HN\)

a) \(\Delta\)ABD \(\approx\)\(\Delta\)BCA ( A= B =90 ; B = C cung phụ góc BAC )
=> AB/ BC = AD/BA => AD.BC = AB2 =4R2 không đổi
b) + CM : M là trung điểm AD
MA=ME =>gocs EAM = AEM => MED = EDM ( cùng phụ EAD )
=> ME=MD =MA => M là trung điểm AD
+ tương tự N là trung ddiemr BC
* Nếu E chính giữa AB => MN//AB//DC
** E không chính giữa AB
=> Gọi AB x CD tại K ( áp dụng talet => trung tuyến KM trùng trung tuyến KN)
=> 3 đường đồng quy.
c) cô si AD+ BC >/ 2 căn AD.BC = 2R
=> S min =AB .(AD+BC) /2 = 2R.R = 2R2
khi AD =BC ( E chính giữa AB)
tự trình bày cho rõ nhé..