Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: \(x\ne1\)
a) Xét phương trình: \(\frac{x^2-2mx+3m-2}{x-1}=0\Leftrightarrow x^2-2mx+3m-2=0\)\(\left(x-1\ne0\right)\)
Pt có hai nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow m^2-3m+2>0\Leftrightarrow\orbr{\begin{cases}m>2\\m< 1\end{cases}}\)
Khi đó \(\hept{\begin{cases}x_1=m-\sqrt{m^2-3m+2}\\x_2=m+\sqrt{m^2-3m+2}\end{cases}}\)
+) \(x_1,x_2\ne1\Leftrightarrow\hept{\begin{cases}m-\sqrt{m^2-3m+2}\ne1\\m+\sqrt{m^2-3m+2}\ne1\end{cases}\Leftrightarrow m\ne1}\)
+) Tiếp tuyến của đồ thị tại hai giao điểm với trục Ox vuông góc với nhau
\(\Leftrightarrow\hept{\begin{cases}y'\left(x_1\right)=-1\left(1\right)\\y'\left(x_2\right)=1\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\frac{\left(2x_1-2m\right)\left(x_1-1\right)-\left(x_1^2-2mx_1+3m-2\right)}{\left(x_1-1\right)^2}=-1\)
\(\Leftrightarrow\frac{m-1}{\left(x_1-1\right)^2}=2\Rightarrow m-1=2\left(m-\sqrt{m^2-3m+2}-1\right)^2\)
\(\Leftrightarrow\left(m-1\right)\left[1-2\left(2m-3-2\sqrt{m^2-3m+2}\right)\right]=0\)
\(\Leftrightarrow4\sqrt{m^2-3m+2}=4m-7\Leftrightarrow\hept{\begin{cases}m\ge\frac{7}{4}\\m=\frac{17}{8}\end{cases}}\Leftrightarrow m=\frac{17}{8}\)(t/m m>2 v m<1)
Giải (2) cho ra \(m=1\)(loại). Vậy m cần tìm là \(m=\frac{17}{8}.\)
Đồ thị hàm số y = sin x trên đoạn [-2π, 2π]
Dựa vào đồ thị hàm số y = sinx
a) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị bằng -1 là:
x=−π2;x=3π2x=−π2;x=3π2
b) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị âm là:
x ∈ (-π, 0) ∪ (π, 2 π)
\(y'=4x\)
\(\Rightarrow y'\left(1\right)=4\) ; \(y\left(1\right)=2.1^1-1=1\)
Phương trình tiếp tuyến:
\(y=4\left(x-1\right)+1=4x-3\)
\(y'=3ax^2-2\)
a/ Với \(a=\frac{1}{3}\Rightarrow y'=x^2-2\)
d: \(y=-\frac{1}{9}x+2\Rightarrow k=9\Rightarrow x_0^2-2=9\Rightarrow\left[{}\begin{matrix}x_0=\sqrt{11}\Rightarrow y_0=\frac{5\sqrt{11}}{3}\\x_0=-\sqrt{11}\Rightarrow y_0=-\frac{5\sqrt{11}}{3}\end{matrix}\right.\)
Phương trình tiếp tuyến:
\(\left[{}\begin{matrix}y=9\left(x-\sqrt{11}\right)+\frac{5\sqrt{11}}{3}\\y=9\left(x+\sqrt{11}\right)-\frac{5\sqrt{11}}{3}\end{matrix}\right.\) bạn tự rút gọn
b/ Gọi tiếp tuyến tại \(x_0\) có dạng:
\(y=\left(3ax_0^2-2\right)\left(x-x_0\right)+ax_0^3-2x_0=\left(3ax_0^2-2\right)x-2ax_0^3\)
Do \(2x-y-10=0\) hay \(y=2x-10\) là tiếp tuyến nên:
\(\left\{{}\begin{matrix}3ax_0^2-2=2\\2ax_0^3=10\end{matrix}\right.\) \(\Rightarrow a=\frac{64}{675}\)