K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

Phương trình hoành độ giao điểm: x4-(3m+4) x2+ m= 0       ( 1)

Đặt t= x2, phương trình trở thành: t2-(3m+4)t+ m= 0       ( 2)

C cắt trục hoành tại bốn điểm phân biệt khi và chỉ khi ( 1) có bốn nghiệm phân biệt

Khi đó ( 2) có hai nghiệm dương phân biệt 

+ Khi đó phương trình *(2) có hai nghiệm 0<t1< y2. Suy ra phương trình (1)  có bốn nghiệm phân biệt là x 1 = - t 2 < x 2 = - t 1 < x 3 = t 1 < x 4 = - t 2  . Bốn nghiệm x1; x2; x3; x4 lập thành cấp số cộng

⇔ x 2 - x 1 = x 3 - x 2 = x 4 - x 3 ⇔ - t 1 + t 2 = 2 t 1 ⇔ t 2 = 3 t 1 ⇔ t 2 = 9 t 1                   ( 3 )

Theo định lý Viet ta có  t 1 + t 2 = 3 m + 4           ( 4 ) t 1 t 2 = m 2                               ( 5 )  

Từ (3) và (4) ta suy ra được  t 1 = 3 m + 4 10 t 2 = 9 ( 3 m + 4 ) 10   ( 6 ) .

Thay (6) vào  (5)  ta được 

 

Vậy giá trị m  cần tìm làm =12; m= -12/ 19

Chọn B.

11 tháng 5 2019

Phương trình hoành độ giao điểm: x4-(3m+4)x2+m2  =0 (1)

Đặt t = x≥ 0, phương trình (1) trở thành: t2-(3m+4)t+m2=0   (2)

(C) cắt trục hoành tại bốn điểm phân biệt khi (1) có bốn nghiệm phân biệt

Hay (2) có hai nghiệm dương phân biệt 

Khi đó phương trình (2) có hai nghiệm 0<t1<t2  Suy ra phương trình (1)  có bốn nghiệm phân biệt là 

Bốn nghiệm x1; x2 ; x3; x4 lập thành cấp số cộng

Vậy giá trị m cần tìm là m=12; m=-12/19; có 1 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

Chọn B.

15 tháng 4 2017

Đồ thị (C)  cắt trục hoành tại điểm phân biệt tạo thành cấp số cộng khi và chỉ khi phương trình x3-3x2-1= m   có ba nghiệm phân biệt lập thành cấp cố cộng.

Suy ra đường thẳng y=m đi qua điểm uốn của đồ thị y=x3-3x2-1 (do đồ thị (C)  nhận điểm uốn làm tâm đối xứng).

Mà điểm uốn của y= x3-3x2-1 là I(1 ; -3) .

Suy ra m=-3.

Chọn C.

15 tháng 12 2017

+ Đồ thị C cắt trục hoành tại điểm phân biệt tạo thành cấp số cộng khi và chỉ khi phương trình  x3- 3x2- 1=m   có ba nghiệm phân biệt lập thành cấp cố cộng.

+ Suy ra đường thẳng y= m đi qua điểm uốn của đồ thị y= x3- 3x2- 1

(do đồ thị (C)  nhận điểm uốn làm tâm đối xứng).

+ Mà điểm uốn của đồ thị đã cho là I( 1 ; -3)

( hoành độ điểm uốn là nghiệm phương trình y’’= 0 hay y’’= 6x-6=0 do đó x= 1 ; y= -3)

Suy ra m=  -3.

Chọn C.

21 tháng 4 2016

Phương trình hoành độ giao điểm : \(-x^4+2\left(2+m\right)x^2-3-2m=0\left(1\right)\)

Đặt \(t=x^2,\left(t\ge0\right)\), phương trình (1) trở thành : \(t^2-1\left(m+2\right)t+3+2m=0\left(2\right)\)

(1) có 4 nghiệm phân biệt khi và chỉ khi (2) có 2 nghiệm dương phân biệt

Điều kiện là : \(\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m+1>0\\m+2>0\\3+2>0\end{cases}\)  \(\Leftrightarrow\begin{cases}m\ne-1\\m>-\frac{3}{2}\end{cases}\) (*)

Với điều kiện (*), giả sử \(t_1;t_2\) (\(0 < t 1 < t2 \)  là 2 nghiệm phân biệt của (2), khi đó (1) có 4 nghiệm phân biệt là \(x_1=-\sqrt{t_2};x_2=-\sqrt{t_1};x_3=\sqrt{t_1};x_4=\sqrt{t_2};\)

\(x_1;x_2;x_3;x_4\) lập thành một cấp số cộng khi và chỉ khi :

\(x_2-x_1=x_3-x_2=x_4-x_3\)

\(\Leftrightarrow t_2=9t_1\left(a\right)\)

Áp dụng định lí Viet ta có : \(t_1+t_2=2\left(m+2\right);t_1.t_2=3+2m\left(b\right)\)

Từ (a) và (b) ta có : \(9m^2-14m-39=0\)

Đối chiếu điều kiện (*) ta có \(m=3\) hoặc \(m=-\frac{13}{9}\)

4 tháng 7 2019

22 tháng 11 2017

28 tháng 7 2019

20 tháng 4 2018