Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt hoành độ giao điểm của đồ thị hàm số (C) với đường thẳng d là:
\(\dfrac{x-1}{x+1}=m-x\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\g\left(x\right)=x^2+\left(2-m\right)x-m-1=0\left(1\right)\end{matrix}\right.\)
Đồ thị (C) cắt đường thẳng d tại 2 điểm phân biệt <=> pt(1) có 2 nghiệm phân biệt khác -1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\g\left(-1\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+8>0\\-2\ne0\end{matrix}\right.\)
Khi đó: \(x_A,x_B\) là nghiệm của pt (1). Vì tiếp tuyến tại A và B //
\(\Rightarrow f'\left(x_A\right)=f'\left(x_B\right)\Leftrightarrow\dfrac{2}{\left(x_A+1\right)^2}=\dfrac{2}{\left(x_B+1\right)^2}\Leftrightarrow\left[{}\begin{matrix}x_A=x_B\left(loai\right)\\x_A+x_B=-2\end{matrix}\right.\)
Theo định lí Viet ta có:
\(x_A+x_B=m-2\Rightarrow m-2=-2\Leftrightarrow m=0\)
Các điều kiện về xác định coi như thỏa mãn
\(y'=\frac{\left(3m+1\right)m-1\left(-m^2+m\right)}{\left(x+m\right)^2}=\frac{4m^2}{\left(x+m\right)^2}\)
Giao điểm của (C) với trục hoành thỏa mãn: \(\left(3m+1\right)x=m^2+m\Rightarrow x=\frac{m^2+m}{3m+1}\)
Do tiếp tuyến song song d
\(\Rightarrow y'\left(\frac{m^2+m}{3m+1}\right)=1\Rightarrow\left[{}\begin{matrix}\frac{2m}{\frac{m^2+m}{3m+1}+1}=1\\\frac{2m}{\frac{m^2+m}{3m+1}+1}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2m=\frac{m^2+m}{3m+1}+1\\2m=-\frac{m^2+m}{3m+1}-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5m^2-2m-1=0\\7m^2+6m+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=\frac{1\pm\sqrt{6}}{5}\\m=\frac{-3\pm\sqrt{2}}{7}\end{matrix}\right.\)
Bạn kiểm tra lại tính toán
\(\left(m^2-3m-5\right)x-y-2m+19=0\)
\(\Leftrightarrow y=\left(m^2-3m-5\right)x-2m+19\)
Ta có:
\(f'\left(x\right)=-3x^2+4x-1\)
\(f'\left(2\right)=-5\)
Phương trình tiếp tuyến tại A:
\(y=-5\left(x-2\right)+3\Leftrightarrow y=-5x+13\)
Để hai đường thẳng song song:
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m-5=-5\\-2m+19\ne13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m=0\\2m\ne6\end{matrix}\right.\)
\(\Leftrightarrow m=0\)
Câu 2:
\(f'\left(x\right)=\frac{-3}{\left(2x-1\right)^2}\)
a/ \(x_0=-1\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-\frac{1}{3}\\f\left(x_0\right)=0\end{matrix}\right.\)
Pttt: \(y=-\frac{1}{3}\left(x+1\right)=-\frac{1}{3}x-\frac{1}{3}\)
b/ \(y_0=1\Rightarrow\frac{x_0+1}{2x_0-1}=1\Leftrightarrow x_0+1=2x_0-1\Rightarrow x_0=2\)
\(\Rightarrow f'\left(x_0\right)=-\frac{1}{3}\)
Pttt: \(y=-\frac{1}{3}\left(x-2\right)+1\)
c/ \(x_0=0\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-3\\y_0=-1\end{matrix}\right.\)
Pttt: \(y=-3x-1\)
d/ \(6x+2y-1=0\Leftrightarrow y=-3x+\frac{1}{2}\)
Tiếp tuyến song song d \(\Rightarrow\) có hệ số góc bằng -3
\(\Rightarrow\frac{-3}{\left(2x_0-1\right)^2}=-3\Rightarrow\left(2x_0-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=-1\\x_0=1\Rightarrow y_0=2\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-3x-1\\y=-3\left(x-1\right)+2\end{matrix}\right.\)
Làm câu 1,3 trước, câu 2 hơi dài tối rảnh làm sau:
1/ \(\lim\limits\frac{n^2+2n+1}{2n^2-1}=lim\frac{1+\frac{2}{n}+\frac{1}{n^2}}{2-\frac{1}{n^2}}=\frac{1}{2}\)
\(\lim\limits_{x\rightarrow0}\frac{2\sqrt{x+1}-x^2+2x+2}{x}=\frac{2-0+0+2}{0}=\frac{4}{0}=+\infty\)
Chắc bạn ghi nhầm đề, câu này biểu thức tử số là \(...-x^2+2x-2\) thì hợp lý hơn
3/ \(y'=2sin2x.\left(sin2x\right)'=4sin2x.cos2x=2sin4x\)
b/ \(y'=4x^3-4x\)
c/ \(y'=\frac{3\left(x+2\right)-1\left(3x-1\right)}{\left(x+2\right)^2}=\frac{7}{\left(x+2\right)^2}\)
d/ \(y'=10\left(x^2+x+1\right)^9\left(x^2+x+1\right)'=10\left(x^2+x+1\right)^9.\left(2x+1\right)\)
e/ \(y'=\frac{\left(2x^2-x+3\right)'}{2\sqrt{2x^2-x+3}}=\frac{4x-1}{2\sqrt{2x^2-x+3}}\)
a:Sửa đề: y=x^3-3x^2+2
y'=3x^2-3*2x=3x^2-6x
y=2
=>x^3-3x^2=0
=>x=0 hoặc x=3
=>y'=0 hoặc y'=3*3^2-6*3=27-18=9
A(0;2); y'=0; y=2
Phương trình tiếp tuyến có dạng là;
y-2=0(x-0)
=>y=2
A(3;2); y'=9; y=2
Phương trình tiếp tuyến có dạng là:
y-2=9(x-3)
=>y=9x-27+2=9x-25
b: Tiếp tuyến tại M song song với y=6x+1
=>y'=6
=>3x^2-6x=6
=>x^2-2x=2
=>x=1+căn 3 hoặc x=1-căn 3
=>y=0 hoặc y=0
M(1+căn 3;0); y=0; y'=6
Phương trình tiếp tuyến là:
y-0=6(x-1-căn 3)=6x-6-6căn3
M(1-căn 3;0); y=0; y'=6
Phương trình tiếp tuyến là:
y-0=6(x-1+căn 3)
=>y=6x-6+6căn 3
\(y=\frac{2x+3}{x-2}\Rightarrow y'=\frac{-7}{\left(x-2\right)^2}\)
Tiếp tuyến song song với d nên có hệ số góc \(k=-\frac{1}{7}\)
\(\Rightarrow\frac{-7}{\left(x_0-2\right)^2}=-\frac{1}{7}\Rightarrow\left(x_0-2\right)^2=49\)
\(\Rightarrow\left[{}\begin{matrix}x_0=9\Rightarrow y_0=3\\x_0=-5\Rightarrow y_0=1\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-\frac{1}{7}\left(x-9\right)+3\\y=-\frac{1}{7}\left(x+5\right)+1\end{matrix}\right.\)
Làm lại: phân tích nhân tử nhầm:
1) để y đi qua A(1,0) \(\Leftrightarrow1-\left(m+1\right)+\left(m-1\right)+1=0=0+0+0=0\Rightarrow dung..\forall m\)2) y(x)=\(x^2\left(x-1\right)-mx\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-mx-1\right)\)
x^3-mx^2-x-x^2+mx+1=x^3-(m+1)x^2+(m-1)x+1 {không sai được nữa}
2)Để y cắt Ox tại hai điểm B,C cần
\(\left\{\begin{matrix}1-m-1\ne0\\x^2-mx-1=0co.2N_o\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}m\ne0\\\Delta=m^2+4>0\end{matrix}\right.\) \(\Rightarrow m\ne0\)
\(\left\{\begin{matrix}x_b=\dfrac{m-\sqrt{m^2+4}}{2}\\x_c=\dfrac{m+\sqrt{m^2+4}}{2}\end{matrix}\right.\)
\(y'\left(x\right)=3x^2-2\left(m+1\right)x+\left(m-1\right)\)
GIAO luu;
\(y=\left(x-1\right)\left(x^2+x+1\right)-m\left(x^2-x\right)+\left(x^2-x\right)\)
m cần thỏa mãn 3 điều kiện
(1) y đi qua A; (2) có 3 nghiệm (3) tiếp tuyến //
Thỏa mãn ĐK(1)
\(y=\left(x-1\right)\left[x^2-\left(m-2\right)x+1\right]\)=>\(x=1\Rightarrow y=0\forall m\Rightarrow\) y luôn đi qua A(1;0)
kết luận (1) Đúng mọi m.(*)
Thỏa mãn ĐK (2)
Để y cắt Ox tại B,C phân biệt:
cần: \(\left\{\begin{matrix}x^2-\left(m-2\right)x+1=0\left(1\right)có.2N_0\\1-\left(m-2\right)+1\ne0\Rightarrow m\ne4\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\Delta_x>0\Rightarrow m^2-4m>0\Rightarrow\left[\begin{matrix}m< 0\\m>4\end{matrix}\right.\)
kết luận (2) \(\left\{\begin{matrix}m\ne4\\\left[\begin{matrix}m< 0\\m>4\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}m< 0\\m>4\end{matrix}\right.\)(**)
Thỏa mãn ĐK (3)
\(y'=3x^2-2\left(m+1\right)x+\left(m-1\right)\)
Để Tiếp tuyến tại B//C cần: \(y'\left(x_b\right)=y'\left(x_c\right)\)
Thay \(x_b\&x_c\Rightarrow g\left(m\right)=0\Rightarrow m\)
p/s: "Hiểu thế nào làm thế đó, chưa biết đúng hay sai.Ai đi qua test hộ cái"
Chọn A.