Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔNMI và ΔNEI có
NM=NE
góc MNI=góc ENI
NI chung
Do đo: ΔNMI=ΔNEI
b: Ta có: \(\widehat{PME}+\widehat{NME}=90^0\)
\(\widehat{KME}+\widehat{NEM}=90^0\)
mà góc NME=góc NEM
nên góc PME=góc KME
=>ME là phân giác của góc KMP
1: Xét ΔNMI và ΔNEI co
NM=NE
góc MNI=góc ENI
NI chung
=>ΔNMI=ΔNEI
=>IM=IE
=>ΔIME cân tại I
2: góc KME+góc NEM=90 độ
góc PME+góc NME=90 độ
mà góc NEM=góc NME
nên góc KME=góc PME
=>ME là phân giác của góc KMP
3: góc MIQ=90 độ-góc MNI
góc MQI=góc NQK=90 độ-góc PNI
mà góc MNI=góc PNI
nên góc MIQ=góc MQI
=>ΔMIQ cân tại M
4: Xét ΔIMF vuông tại M và ΔIEP vuông tại E có
IM=IE
góc MIF=góc EIP
=>ΔIMF=ΔIEP
=>MF=EP
Xét ΔNFP có NM/MF=NE/EP
nên ME//FP
▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一▄︻̷̿┻̿═━一
a) Ta có: ΔMNP vuông tại N(gt)
nên \(\widehat{NPM}+\widehat{NMP}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow90^0=30^0+\widehat{NMK}\)
hay \(\widehat{NMK}=60^0\)
Xét ΔMHN vuông tại H và ΔKHN vuông tại H có
MH=KH(gt)
NH chung
Do đó: ΔMHN=ΔKHN(hai cạnh góc vuông)
Suy ra: NM=NK(hai cạnh tương ứng)
Xét ΔNMK có NM=NK(cmt)
nên ΔNMK cân tại N(Định nghĩa tam giác cân)
Xét ΔNMK cân tại N có \(\widehat{NMK}=60^0\)(cmt)
nên ΔNMK đều(Dấu hiệu nhận biết tam giác đều)
a) Xét ΔEAM và ΔNAD có
AE=AN(gt)
\(\widehat{EAM}=\widehat{NAD}\)(hai góc đối đỉnh)
AM=AD(A là trung điểm của MD)
Do đó: ΔEAM=ΔNAD(c-g-c)
Suy ra: ME=ND(Hai cạnh tương ứng)