K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

Kẻ OM vuông góc với BC, kẻ  AI vuông góc với BC

\(\Rightarrow\)OM//AI

Xét tam giác AA'I có OM//AI(cmt)

\(\Rightarrow\)\(\frac{OM}{AI}=\frac{OA'}{AA'}\)(Theo hệ quả Ta-lét)

\(\Rightarrow\)\(\frac{OA'}{AA'}=\frac{\frac{1}{2}.OM.BC}{\frac{1}{2}.AI.BC}=\frac{S_{BDC}}{S_{ABC}}\)

Tương tự, ta có  \(\frac{DB'}{BB'}=\frac{S_{ADC}}{S_{ABC}}\)

               \(\frac{DC'}{CC'}=\frac{S_{ADB}}{S_{ABC}}\)

nên \(\Rightarrow\)đ/cm

2 tháng 8 2017

A B C A' B' C' O H

a) kẻ đường cao AH.Dễ thấy \(\dfrac{OA'}{AA'}=\dfrac{S_{BOC}}{S_{ABC}}\).Tương tự ta có:

\(\dfrac{OB'}{BB'}=\dfrac{S_{AOC}}{S_{ABC}};\dfrac{OC'}{CC'}=\dfrac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\dfrac{OA'}{AA'}+\dfrac{OB'}{BB'}+\dfrac{OC'}{CC'}=\dfrac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1\left(QED\right)\)

b)Theo câu a:

\(\left(1-\dfrac{OA'}{AA'}\right)+\left(1-\dfrac{OB'}{BB'}\right)+\left(1-\dfrac{OC'}{CC'}\right)=3-1\)

\(\Rightarrow\dfrac{OA}{AA'}+\dfrac{OB}{BB'}+\dfrac{OC}{CC'}=2\)

c)Chứng minh \(\dfrac{OA}{OA'}+\dfrac{OB}{OB'}+\dfrac{OC}{OC'}\ge6\)

\(\Leftrightarrow\dfrac{AA'}{OA'}+\dfrac{BB'}{OB'}+\dfrac{CC'}{OC'}\ge9\)

có:\(\dfrac{AA'}{OA'}=\dfrac{S_{ABC}}{S_{BOC}}\)( theo câu a)

tương tự và cộng lại:\(M=\dfrac{AA'}{OA'}+\dfrac{BB'}{OB'}+\dfrac{CC'}{OC'}=S_{ABC}\left(\dfrac{1}{S_{BOC}}+\dfrac{1}{S_{AOC}}+\dfrac{1}{S_{AOB}}\right)\ge\dfrac{9S_{ABC}}{S_{BOC}+S_{AOB}+S_{AOC}}=\dfrac{9S_{ABC}}{S_{ABC}}=9\)

( BĐT AM-GM)

Dấu = xảy ra hay M nhỏ nhất khi O là trọng tâm của tam giác ABC

d) có: \(\dfrac{AA'}{OA'}=\dfrac{S_{ABC}}{S_{BOC}}\Rightarrow\dfrac{AA'-OA'}{OA'}=\dfrac{S_{ABC}-S_{BOC}}{S_{BOC}}\)

\(\Rightarrow\dfrac{OA}{OA'}=\dfrac{S_{AOC}+S_{AOB}}{S_{BOC}}\)

Tương tự và nhân lại:

\(N=\dfrac{OA}{OA'}.\dfrac{OB}{OB'}.\dfrac{OC}{OC'}=\dfrac{\left(S_{AOC}+S_{AOB}\right)\left(S_{BOC}+S_{AOB}\right)\left(S_{BOC}+S_{AOC}\right)}{S_{AOB}.S_{AOC}.S_{BOC}}\)

Đặt \(\left(S_{BOC};S_{AOB};S_{AOC}\right)\rightarrow\left(a,b,c\right)\)

Thì \(N=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Theo AM-GM:\(N\ge\dfrac{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}}{abc}=\dfrac{8abc}{abc}=8\)

Dấu = xảy ra khi O là trọng tâm của tam giác ABC

11 tháng 8 2017

Hoang Hung Quan;d cái đó avata đủ hiểu r mà ;d

7 tháng 4 2018

Lời giải:

A B C O P Q R Đặt \(S_{BOC}=S_1;S_{AOC}=S_2;S_{AOB}=S_3;S_{ABC}=S\)

Ta có \(\dfrac{OA}{OP}=\dfrac{S_{AOB}}{S_{POB}}=\dfrac{S_{AOC}}{S_{POC}}=\dfrac{S_{AOB}+S_{AOC}}{S_{COB}}=\dfrac{S_2+S_3}{S_1}\)

Tương tự:\(\dfrac{OB}{OQ}=\dfrac{S_3+S_1}{S_2};\dfrac{OC}{OR}=\dfrac{S_1+S_2}{S_3}\)

\(\Rightarrow\dfrac{OA}{OP}.\dfrac{OB}{OQ}.\dfrac{OC}{OR}=\dfrac{\left(S_1+S_2\right)\left(S_2+S_3\right)\left(S_3+S_1\right)}{S_1.S_2.S_3}\ge\)

\(\ge\dfrac{2\sqrt{S_1.S_2}.2\sqrt{S_2.S_3}.2\sqrt{S_3.S_1}}{S_1.S_2.S_3}=8\)

Dấu "=" xảy ra \(\Leftrightarrow S_1=S_2=S_3\Leftrightarrow\) O là giao điểm ba đường trung tuyến tam giác ABC

23 tháng 1 2022

A B C E F K O

Xét Δ ABO và Δ ABK có chung đường cao hạ từ B xuống AK

=>\(\dfrac{S_{ABO}}{S_{ABK}}=\dfrac{AO}{AK}\)

Xét Δ ACO và Δ ACKcó chung đường cao hạ từ C xuống AK

=>\(\dfrac{S_{ACO}}{S_{ACK}}=\dfrac{AO}{AK}\)

\(\Rightarrow\dfrac{AO}{AK}=\dfrac{S_{ABO}}{S_{ABK}}=\dfrac{S_{ACO}}{S_{ACK}}=\dfrac{S_{ABO}+S_{ACO}}{S_{ABK}+S_{ACK}}\)\(=\dfrac{S_{ABO}+S_{ACO}}{S_{ABC}}\)(1)

( vì \(S_{ABK}+S_{ACK}=S_{ABC}\)

c/m tương tự như trên t sẽ có:

\(\dfrac{BO}{BE}=\dfrac{S_{BOA}+S_{BOC}}{S_{BEA}+S_{BEC}}=\dfrac{S_{BOA}+S_{BOC}}{S_{ABC}}\left(2\right)\)

\(\dfrac{CO}{CF}=\dfrac{S_{COA}+S_{COB}}{S_{CFA}+S_{CFB}}=\dfrac{S_{COA}+S_{COB}}{S_{ABC}}\left(3\right)\)

Cộng tất cả vế (1) , (2) , (3) ta có :

\(\dfrac{OA}{AK}+\dfrac{OB}{BE}+\dfrac{OC}{CF}=\dfrac{2\left(S_{ABO}+S_{ACO}+S_{BOC}\right)}{S_{ABC}}=2\) ( đpcm)

( vì \(S_{ABO}+S_{ACO}+S_{BOC}=S_{ABC}\)

23 tháng 1 2022

cảm ơn chị