Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho H(2+t;1+2t;t) ∈ ∆ . Ta có: A H → =(1+t;1+2t;t) đường thẳng ∆ có vecto chỉ phương a → =(1;2;1). Vì H là hình chiếu vuông góc của A trên ∆ nên AH vuông góc với ∆ <=> A H → . a → = 0
Đáp án D.
Phương pháp giải: Lập phương trình mặt phẳng đi qua điểm và vuông góc với đường thẳng. Khi đó, tọa độ giao điểm của d và (P) chính là tọa độ hình chiếu.
Lời giải: VTCP của đường thẳng d
Ta có:
Phương trình mặt phẳng (P) đi qua M, vuông góc với d là :
Đường thẳng MH vuông góc với (α)
⇒ MH nhận vtpt của (α) là 1 vtcp
Mà M(1; 4; 2) ∈ MH
⇒ Pt đường thẳng MH:
⇒ H(1 + t; 4 + t; 2 + t).
H ∈ (α) ⇒ 1 + t + 4 + t + 2 + t – 1 = 0 ⇔ t = -2.
⇒ H(-1; 2; 0).
Đáp án D.
Vì H là hình chiếu vuông góc của A lên đường thẳng ∆
Đáp án B
Vì M là hình chiếu vuông góc của I trên ∆
Khi đó
Vậy M(5;-2;-5) hoặc M(5;-8;1) => bc =10
Lớn rồi có ý thức chút đi buff sp bị người khác phát hiện mà cứ cố cãi làm gì
a) Đường thẳng ∆ có vectơ chỉ phương →uu→(1 ; 2 ; 1). H ∈ ∆ nên H(2 + t ; 1 + 2t ; t).
Điểm H ∈ ∆ là hình chiếu vuông góc của A lên ∆ khi và chỉ khi −−→AHAH→ ⊥ →uu→.
Ta có −−→AHAH→(1+t ; 1 + 2t ; t) nên:
−−→AHAH→ ⊥ →uu→ ⇔ →u.−−→AHu→.AH→ = 0.
⇔ 1 + t + 2(1 + 2t) + t = 0
⇔ 6t + 3 = 0 ⇔ t = −12−12.
⇔ H(32;0;−12)H(32;0;−12).
b) Gọi A' là điểm đối xứng của A qua ∆ và H là hình chiếu vuông góc của A lên ∆ thì H là trung điểm của AA'; vì vậy tọa độ của H là trung bình cộng các tọa độ tương ứng của A và A'.
Gọi A'(x ; y ; z) ta có:
x+12=32x+12=32 => x = 2; y = 0; z = -1.
Vậy A'(2 ; 0 ; -1).
Chọn A
Gọi I = d ∩ Δ. Do I ∈ Δ nên I (2t + 1; t – 1; -t).
từ đó suy ra d có một vectơ chỉ phương là và đi qua M (2 ; 1 ; 0) nên có phương trình
Phương trình tham số của ∆ :
Xét điểm H(1 + 2t; −1 − t; 2t) ∈ ∆
Ta có MH → = (2t − 1; −t; 2t − 1)
a ∆ → = (2; −1; 2)
H là hình chiếu vuông góc của M trên ∆ ⇔ MH → . a ∆ → = 0
⇔ 2(2t − 1) + t + 2(2t − 1) = 0 ⇔ t = 4/9
Ta suy ra tọa độ điểm