Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác vuông IBC có:
\(BC^2=IB^2+IC^2\)
\(\Leftrightarrow BC=\sqrt{IB^2+IC^2}=\sqrt{80}\) cm
Vì ABCD là hình chữ nhật
\(\Rightarrow AD=BC=\sqrt{80}\)
Xét tam giác vuông AID có:
\(AD^2=AI^2+ID^2\)
\(\Rightarrow ID8=\sqrt{AD^2-AI^2}=8cm\)
Bài 2
Quy ước: tất cả đều viết véc tơ:
* Khai thác giả thiết:
+ IA =2IB <=> IA = 2( AB -AI) <=> IA = -2AB <=> AI = 2AB
+ 3JA + 2JC =0 <=> 3JA + 2(JA+ AC) =0 <=> JA = ( -2/5)AC <=> AJ = (2/5) AC
Chỉ ra được vị trí các điểm I, J:
+ I đối xứng với A qua B ( tức B là trung điểm AI)
+ J nằm trên đoạn AC sao cho AJ = 2/5 AC
* Ta có:
+ GI = GA + AI = GA + 2AB
+ GJ = GA + AJ = GA + (2/5) AC
Suy ra:
GI - 5 GJ = -4 GA + 2(AB - AC) = -4GA + 2CB = -4GA + 2(GB -GC)
= -2GA +4GB ( chỗ này có áp dụng tính chất trọng tâm: GA +GB + GC =0)
Do B là trung điểm của AI => 2GB = GA +GI
Suy ra:
GI - 5 GJ = -2GA + 2GA + 2 GI
=> GI = - 5 GJ
Đẳng thức này suy ra I, J, G thẳng hàng => IJ đi qua G (đpcm)
Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
Suy ra: \(\widehat{ACD}=\widehat{BDC}\)
hay \(\widehat{ICD}=\widehat{IDC}\)
Xét ΔIDC có \(\widehat{ICD}=\widehat{IDC}\)
nên ΔIDC cân tại I
Suy ra: IC=ID
Ta có: IC+IA=AC
ID+IB=BD
mà AC=BD
và IC=ID
nên IA=IB
Xét △ADC và △BDC có
BC = BD
DC chung
AD = BC
⇒ △ ADC = △ BCD ( c - c - c )
⇒ \(\widehat{BDC}=\widehat{ACD}\)
⇒ △ IDC cân tại I
⇒ ID = IC ( đpcm )
Mà AC = BD
⇒ IA = IB ( đpcm )
mình dịch ra cho:cho hình chữ nhật abcd và có điểm I nằm trong hình chữ nhật ấy sao cho ia=13, ib=8, ic=4 tính id
mình mới lớp 7 thôi nên không biết làm
ta có \(AB^2=CD^2\Leftrightarrow IA^2+IB^2=ID^2+IC^2\)
Thay số vào ta tính được \(ID=\sqrt{217}\)