K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Giả sử M(m;0) và N(0;n)

\(\overrightarrow{AM}\left(m-4;-1\right)\)

\(\overrightarrow{NO}\left(0;-n\right)\)

\(\)\(\overrightarrow{AM}=\overrightarrow{NO}\rightarrow\left\{{}\begin{matrix}m=4\\n=1\end{matrix}\right.\)

Khi đó ta tìm được pt (d): x+4y-4=0

24 tháng 11 2019

Đáp án A

Ta có 

A thuộc ∆1 nên A( a; a+ 1).

P( 2;1) là trung điểm của đoạn AB nên B( 4-a; 1-a).

Mặt khác:

Đường thẳng AP có VTPT ( 4;-1) và qua P(2;1) nên có phương trình:

4x – y- 7 = 0

NV
22 tháng 11 2019

Với \(a\ne0\) ta có:

\(\left\{{}\begin{matrix}-\frac{3}{2a}=-3\\c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\c=4\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x^2+3x+4\)

17 tháng 8 2019

A B C K P Q M N

Áp dụng ĐL Melelaus có \(\frac{\overline{QB}}{\overline{QC}}.\frac{\overline{MA}}{\overline{MB}}.\frac{\overline{NC}}{\overline{NA}}=1\Rightarrow\frac{\overline{QB}}{\overline{QC}}=\frac{\overline{MB}}{\overline{MA}}.\frac{\overline{NA}}{\overline{NC}}\) (1)

Áp dụng ĐL Ceva có \(\frac{\overline{MB}}{\overline{MA}}.\frac{\overline{NA}}{\overline{NC}}.\frac{\overline{PC}}{\overline{PB}}=-1\Rightarrow\frac{\overline{PB}}{\overline{PC}}=-\frac{\overline{MB}}{\overline{MA}}.\frac{\overline{NC}}{\overline{NA}}\) (2)

Từ (1) và (2) suy ra \(\frac{\overline{PB}}{\overline{PC}}=-\frac{\overline{QB}}{\overline{QC}}\). Như vậy \(\left(BCPQ\right)=-1\)tức là hàng điều hòa (đpcm).

P/S: Đề bị thừa điểm O nhé bạn.

17 tháng 8 2019

Cho mình sửa dòng thứ hai: \(\frac{\overline{PB}}{\overline{PC}}=-\frac{\overline{MB}}{\overline{MA}}.\frac{\overline{NA}}{\overline{NC}}\) mới đúng.

Sửa đề: AD=AC

a: Xét ΔACE và ΔADE có 

AC=AD

\(\widehat{CAE}=\widehat{DAE}\)

AE chung

DO đó: ΔACE=ΔADE

Suy ra: \(\widehat{CAE}=\widehat{DAE}\)

hay AE là phân giác của góc CAB

b: Ta có: AC=AD

EC=ED

DO đó: AE là đường trung trực của CD

c: ta có: AE là đường trung trực của CD

nên AE\(\perp\)CD tại I

=>ΔAID vuông tại I

=>\(\widehat{ADI}< 90^0\)

=>\(\widehat{CDB}>90^0\)(Do góc ADI và góc CDB là hai góc kề bù)

Xét ΔCDB có \(\widehat{CDB}>90^0\)

nên BC là cạnh lớn nhất

=>BC>CD

NV
14 tháng 12 2020

Chắc là \(a\ne0\)

Pt hoành độ giao điểm: \(ax^2+bx+c=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\)

Do tọa độ đỉnh là (1;8) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\\dfrac{4ac-b^2}{4a}=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\4ac-\left(-2a\right)^2=32a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\c=a+8\end{matrix}\right.\)

Mà \(MN=4\Leftrightarrow\left|x_1-x_2\right|=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=16\)

\(\Leftrightarrow\left(\dfrac{-2a}{a}\right)^2-4\dfrac{a+8}{a}=16\)

\(\Leftrightarrow a=-2\Rightarrow b=4\Rightarrow c=6\)

2 tháng 11 2021

Mà MN=4⇔|x1−x2|=4MN=4⇔|x1−x2|=4

⇔(x1+x2)2−4x1x2=16

 anh ơi, cái đoạn này là làm sao suy ra được thế ạ

 

14 tháng 8 2018

4 tháng 5 2021

b, \(d\left(I;\Delta\right)=R\Leftrightarrow\dfrac{\left|-2+6+m\right|}{\sqrt{13}}=\sqrt{13}\)

\(\Rightarrow\left[{}\begin{matrix}m=9\\m=-17\end{matrix}\right.\)

 

4 tháng 5 2021

c, Dễ tìm được tọa độ A, B: \(\left\{{}\begin{matrix}A=\left(-3,-1\right)\\B=\left(2,0\right)\end{matrix}\right.\)

Phương trình tiếp tuyến tại A có dạng: \(\Delta_1:ax+by+3a+b=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I,\Delta_1\right)=\dfrac{\left|-a+2b+3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{13}\)

\(\Leftrightarrow\left(2a+3b\right)^2=13a^2+13b^2\)

\(\Leftrightarrow4a^2+9b^2+12ab=13a^2+13b^2\)

\(\Leftrightarrow9a^2+4b^2-12ab=0\)

\(\Leftrightarrow9a^2+4b^2-12ab=0\)

\(\Leftrightarrow3a=2b\)

\(\Rightarrow\Delta_1:2x+3y+9=0\)

Tương tự tiếp tuyến tại B: \(\Delta_2:3x-2y-6=0\)