Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kéo dài AC cắt BD tại M.
Ta có : CH // BM ( vìcùng vuông góc với AB )
--> \(\frac{IH}{BD}=\frac{AI}{AD};\frac{IC}{DM}=\frac{AI}{AD}\rightarrow\frac{IH}{BD}=\frac{IC}{DM}\left(1\right)\)
Mặt khác: CD=BD(tính chất 2 tiếp tuyến cắt nhau) --> góc DCB= góc DBC
Mà : góc DCB + góc DCM =90o; góc DBC +góc CMB =90o --> góc DCM =góc CMD -->MD =CD ,mà CD=DB-->MD=DB (2)
Từ 1 và 2 --> IH=IC -->I là trung điểm CH
a, Xét ΔΔ ABC có OA=OB=OC=12AB.OA=OB=OC=12AB.
⇒Δ⇒Δ ABC vuông tại CC ⇒AC⊥BC.⇒AC⊥BC.
Ta có AD là tiếp tuyến của nửa đường tròn tâm O nên AD ⊥⊥ AB.
Trong ΔΔ ABD vuông tại A có AC⊥BD⇒BC.BD=AB2.AC⊥BD⇒BC.BD=AB2.
Mà AB = 2R nên BC.BD=4R2.BC.BD=4R2.
b, Tam giác ACD vuông tại C có I là trung điểm của AD
⇒AI=DI=CI=12AD.⇒AI=DI=CI=12AD. (Tính chất đường trung tuyến ứng với cạnh huyền).
Xét tam giác AOI và COI có
OI chung
OA = OC
AI = CI
⇒ΔAOI=ΔCOI(c−c−c).⇒ΔAOI=ΔCOI(c−c−c). ⇒ˆIAO=ˆICO⇒IAO^=ICO^ (hai góc tương ứng).
Mà ˆIAO=900⇒ˆICO=900IAO^=900⇒ICO^=900 hay IC ⊥⊥OC
⇒⇒IC là tiếp tuyến của nửa đường tròn tâm O.
c, Ta có AD//CH (cùng vuông góc với AB)
Trong tam giác BAI có KH // AI ⇒KHAI=BKBI⇒KHAI=BKBI (định lý Ta-lét).
Trong tam giác BDI có CK // DI ⇒CKDI=BKBI⇒CKDI=BKBI (định lý Ta-lét).
Suy ra KHAI=CKDI.KHAI=CKDI.
Mà AI = DI nên KH = CK hay K là trung điểm của CH. (điều phải chứng minh).
d.
Gọi E là giao điểm của AH và BD, kéo dài AB và CD cắt nhau tại F
Do I là trung điểm AC \(\Rightarrow OI\) là trung trực của AC
Mà D thuộc OI \(\Rightarrow DA=DC\Rightarrow\Delta DAO=\Delta DCO\left(c.c.c\right)\)
\(\Rightarrow\widehat{DAO}=\widehat{DCO}=90^0\)
\(\Rightarrow DC||AH\) (cùng vuông góc BC)
Trong tam giác BCF, ta có O là trung điểm BC và \(OD||BF\) (cùng vuông góc AC)
\(\Rightarrow OD\) là đường trung bình tam giác BCF
\(\Rightarrow D\) là trung điểm AF hay \(DC=DF\)
Do AH song song DC, áp dụng định lý Thales:
\(\left\{{}\begin{matrix}\dfrac{EH}{DC}=\dfrac{BE}{BD}\\\dfrac{EA}{DF}=\dfrac{BE}{BD}\end{matrix}\right.\) \(\Rightarrow\dfrac{EH}{DC}=\dfrac{EA}{DF}\)
\(\Rightarrow EH=EA\) \(\Rightarrow E\) là trung điểm AH hay BD đi qua trung điểm của AH