K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOBA và ΔOCA có 

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}\)

hay AC là tiếp tuyến của (O)

16 tháng 12 2016

C E A D B I K H d) Gọi E là giao điểm của DB và AC

Ta có góc ABE+góc OBA+góc OBD=180 (góc bẹt)

mà góc OBA=90 (AB là tiếp tuyến của (O))

góc OBD=góc ODB (tam giác ODB cân tại O vì OD=OB)

→góc ABE+góc ODB=90

mà góc AEB+góc ODB=90 (tam giác ODE vuông tại O)

→góc ABE=góc AEB (cùng cộng góc ODB bằng 90)

→tam giác ABE cân tại A→AB=AE

mà AB=AC (tính chất 2 tiếp tuyến cắt nhau tại A)

→AC=AE (cùng bằng AB)

Ta lại có BI song song AC (cùng vuông góc CD)

→BI song song CE (A\(\in\) CE)

Xét tam giác CDA có KI song song CA (BI song song CE; K thuộc BI, A thuộc CE)

\(\frac{DK}{KA}\) =\(\frac{IK}{AC}\) (Định lí Talet) (1)

Xét tam giác ADE có KB song song AE (BI song song CE; K thuộc BI, A thuộc CE)

\(\frac{KB}{AE}\) =\(\frac{DK}{KA}\) (Định lí Talet) (2)

Từ (1) và (2) →\(\frac{IK}{AC}\) =\(\frac{KB}{AE}\) (cùng bằng \(\frac{DK}{KA}\) )

mà AC=AE (cmt)→IK=KB→K là trung điểm của BI

a: Xét ΔOBA và ΔOCA có 

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}\)

hay AC là tiếp tuyến của (O)

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).a) cm: A,B,O,C cùng thuộc một đường tròn.b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.c) cm: BC trùng với tia phân giác của góc DHE.d) Từ D kẻ đường thẳng song song với BE, đường...
Đọc tiếp

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).

a) cm: A,B,O,C cùng thuộc một đường tròn.

b) cm: OA vuông BC tại H và OD= OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.

c) cm: BC trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, AC lần lượt tại M và N. cm: D là trung điểm MN.

Bài 2: Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc vs CD tại H.

a) cm: A,B,O,C cùng thuoojcj một đường tròn. Xác định tâm và bán kính của đường tròn đó.

b) cm: AO vuông góc vs BC. Cho biết R=15cm, BC=24cm. Tính AB, OA.

c) cm: BC là tia phân giác của góc ABH.

d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. cm: IH=IB.

0
NV
23 tháng 1

a. Em tự giải

b. 

\(\Delta OAB\) cân tại O (do \(OA=OB=R\), mà \(OH\) là đường vuông góc (do OH vuông góc AB)

\(\Rightarrow OH\) đồng thời là trung tuyến và trung trực của AB

Hay OM là trung trực của AB

\(\Rightarrow MA=MB\Rightarrow\Delta MAB\) cân tại M

c.

Do EC là tiếp tuyến tại C \(\Rightarrow EC\perp AC\)

MA là tiếp tuyến tại A \(\Rightarrow MA\perp AC\)

\(\Rightarrow EC||MA\Rightarrow\widehat{MAH}=\widehat{CEB}\) (so le trong)

Mà \(\widehat{MAH}=\widehat{MOA}\) (cùng phụ \(\widehat{AMH}\))

\(\Rightarrow\widehat{CEB}=\widehat{MOA}\)

Xét hai tam giác CEB và MOA có:

\(\left\{{}\begin{matrix}\widehat{CEB}=\widehat{MOA}\left(cmt\right)\\\widehat{CBE}=\widehat{MAO}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta CEB\sim\Delta MOA\left(g.g\right)\)

\(\Rightarrow\dfrac{BE}{OA}=\dfrac{BC}{AM}\Rightarrow BE.AM=BC.OA\)

Mà \(MA=MB\) (theo cm câu b) và \(OA=BO=R\)

\(\Rightarrow BE.BM=BC.BO\)

NV
23 tháng 1

loading...