Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự vẽ hình nhá.
Vì E là trung điểm MN => OE vuông góc MN => góc OEA =90độ
Xét tứ giác: AEOC có góc AEO + góc ACO=180độ => AEOC nội tiếp => A, E, O, C cùng thuộc 1 đường tròn
Xét tứ giác: ABEO có góc ABO + góc AEO=90độ => ABEO nội tiếp => A, E, O, B cùng thuộc 1 đường tròn
=> A, B, C, O, E cùng thuộc 1 đường tròn.
b, Ta có: góc BNC= 1/2 góc BOC (góc nội tiếp bằng 1/2 góc ở tâm) => 2.góc BNC= góc BOC
MÀ góc ABOC nội tiếp (do góc ABO+ góc ACO = 180độ) => gó BAC + góc BOC=180độ
=> 2.góc BNC+ góc BAC= 180độ
c, ta có: AMN là cát tuyến, AB là tiếp tuyến của (O) => AB2=AM.AN
Lại có tg AHB đồng dạng tg ABO (g-g) => \(\frac{AH}{AB}=\frac{AB}{AO}\)=> AB2=AH.AO
=> AH.AO= AM.AN => \(\frac{AM}{AH}=\frac{AO}{AN}\)
Và góc MAH=góc OAN => tg MAH đồng dạng tg OAN (c-g-c) => góc AMH = góc AON
Mà góc AMH + góc HMN =180độ
=> góc AON + góc HMN =180độ
=> tứ giác MNOH nội tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a dễ nha: tứ giác BCDO có DOB+DCB=90+90=180(mà 2 góc ở vị trí đối nhau )
nên BCDO nội tiếp
câu b) tam giác ADO và tam giác ABC có:
góc BAC chung
AOD=ACB=90
câu c: CB là dây cung mà OE là đường thẳng đi qua bán kính nên OE vuông góc với BC
nên OE// DC hay AD//OE mà DE//AO nên OEDA là hình bình hành
câu d thì mk chưa nghĩ ra hihi thông cảm nha
ở câu c nếu chỉ có BC là dây và OE là đường thẳng đi qua bán kính thì BC chưa thể vuông góc với OE được bạn nhé mà cần phải OE đi qua trung điểm của BC nữa
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
![](https://rs.olm.vn/images/avt/0.png?1311)
( 1 số phần cơ bản sẽ làm tắt nha, cái đấy bạn sẽ tự trình bày rõ nhá, nhất là chứng minh tứ giác nội tiếp sẽ rút ngắn lại )
a)\(\widehat{ABO}=\widehat{AEO}=90^0\)
\(\Rightarrow ABEO\)nội tiếp
=> A,B,E,O thuộc 1 đường tròn
b) Xét tam giác AMC và tam giác ACN có:
\(\hept{\begin{cases}\widehat{NAC}chung\\\widehat{ACM}=\widehat{ANC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\end{cases}\Rightarrow\Delta AMC~\Delta ACN\left(g-g\right)}\)
\(\Rightarrow\frac{AM}{AC}=\frac{AC}{AN}\)
\(\Rightarrow AC^2=AM.AN\)
c) \(\widehat{MJC}+\widehat{MFC}=180^0\)
\(\Rightarrow MJCF\)nội tiếp
\(\Rightarrow\widehat{MFJ}=\widehat{MCJ}\)
Mà \(\widehat{MCJ}=\widehat{MBC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\)
\(\Rightarrow\widehat{MFJ}=\widehat{MBC}\left(1\right)\)
CMTT \(\widehat{MFI}=\widehat{MCB}\left(2\right)\)
Xét tam giác MBC có: \(\widehat{CMB}+\widehat{MCB}+\widehat{MBC}=180^0\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow\widehat{CMB}+\widehat{MFJ}+\widehat{MFI}=180^0\)
\(\Rightarrow\widehat{CMB}+\widehat{PFQ}=180^0\)
\(\Rightarrow MPFQ\)nội tiếp
\(\Rightarrow\widehat{MPQ}=\widehat{MFQ}\)mà \(\widehat{MFQ}=\widehat{MBC}\left(cmt\right)\)
\(\Rightarrow\widehat{MPQ}=\widehat{MBC}\)mà 2 góc này ở vị trí đồng vị
\(\Rightarrow PQ//BC\)
d) Xét tam giác MIF và tam giác MFJ có:
\(\hept{\begin{cases}\widehat{MIF}=\widehat{MFJ}\left(=\widehat{MBF}\right)\\\widehat{MJF}=\widehat{MFI}\left(=\widehat{MCF}\right)\end{cases}\Rightarrow\Delta MIF~\Delta MFJ\left(g-g\right)}\)
\(\Rightarrow\frac{MI}{MF}=\frac{MF}{MJ}\)
\(\Rightarrow MI.MJ=MF^2\)
MI.MJ lớn nhất \(\Leftrightarrow MF^2\)lớn nhất
Mà \(MF=\frac{1}{2}MN\)
\(\Rightarrow MF^2=\frac{1}{4}MN^2\)
\(\Rightarrow MF\)lớn nhất <=> MN lớn nhất \(\Leftrightarrow MN\)là đường kính (O)
\(\Leftrightarrow M\)là điểm chính giữa cung BC
Vậy MI.MJ lớn nhất <=> M là điểm chính giữa cung BC.
( KO hiểu thì hỏi mình nha )