K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Gọi H là hình chiếu của A trên xy.

Để lấy hai điểm M, N thỏa mãn AM = AN ta vẽ 1 đường tròn tâm A, bán kính > AH cắt đường thẳng xy tại hai điểm M, N.

a: Chỉ cần lấy M,N thuộc hai tia đối nhau Ox và Oy sao cho OM=ON(O là chân đường cao kẻ A xuống xy) thì ta được hai đường xiên AM=AN

b: 

Trường hợp 1: D trùng với H thì AD=AH 

=>AD>AM

Trường hợp 2: D nằm giữa M và H

=>HD<HM

=>AD<AM(hình chiếu, đường xiên)

Trường hợp 3: D nằm giữa H và N

=>HD<HN

=>AD<AN

mà AM=AN

nên AD<AM

21 tháng 6 2019

a) Phân tích bài toán: Giả sử M và N là hai điểm của đường thẳng xy mà AM = AN. Nếu gọi H là chân đường vuông góc kẻ từ điểm A đến xy thì HM, HN lần lượt là hình chiếu của các đường xiên AM, AN.

Từ AM = AN suy ra HM = HN, từ đó xác định được hai điểm M, N.

Kẻ AH vuông góc với xy (H ∈ xy)

Lấy hai điểm M, N trên xy sao cho HM = HN            (1)

(dùng compa vẽ một đường tròn tâm H bán kính tùy ý; đường tròn này cắt đường thẳng xy tại hai điểm M, N thỏa mãn HM = HN)

Hai đường xiên AM, AN lần lượt có hình chiếu là HM và HN, do đó từ (1) suy ra AM = AN

b) Xét trường hợp D ở giữa M và N

-  Nếu D ≡ H thì AD = AH, suy ra  AD > AM (đường vuông góc ngắn hơn đường xiên)

- Nếu D ở giữa M và H thì HD < HM, do đó AD  < AM (đường xiên có hình chiếu ngắn hơn thì ngắn hơn)

- Nếu D ở giữa H và N thì HD < HN, do đó AD < AN.

Theo a) ta có AM = AN nên AD < AM

Vậy khi D ở giữa M và N thì ta luôn có AD < AM

21 tháng 6 2019

Lời giải:

Bài 2.5, 2.6 trang 40 SBT Toán 7 tập 2 | Giải sách bài tập Toán lớp 7

a) Giả sử M và N là hai điểm của đường thẳng xy mà AM = AN.

Nếu gọi H là chân đường vuông góc kẻ từ điểm A đến xy thì HM, HN lần lượt là hình chiếu của các đường xiên AM, AN.

Từ AM = AN suy ra HM = HN, từ đó xác định được hai điểm M, N.

Kẻ AH vuông góc với xy (H ∈ xy)

Lấy hai điểm M, N trên xy sao cho HM = HN    (1)

(dùng compa vẽ một đường tròn tâm H bán kính tùy ý; đường tròn này cắt đường thẳng xy tại hai điểm M, N thỏa mãn HM = HN)

Hai đường xiên AM, AN lần lượt có hình chiếu là HM và HN, do đó từ (1) suy ra AM = AN

b) Xét trường hợp D ở giữa M và N

- Nếu D ≡ H thì AD = AH, suy ra AD > AM (đường vuông góc ngắn hơn đường xiên)

- Nếu D ở giữa M và H thì HD < HM, do đó AD < AM (đường xiên có hình chiếu ngắn hơn thì ngắn hơn)

- Nếu D ở giữa H và N thì HD < HN, do đó AD < AN.

Theo a) ta có AM = AN nên AD < AM

Vậy khi D ở giữa M và N thì ta luôn có AD < AM

Tham khảo:

undefined

undefined

 

12 tháng 8 2016

c e

 

1 tháng 12 2019

Các khẳng định đúng: a, c, d

29 tháng 3 2017

Các khẳng định đúng: a, c, d