\(\dfrac{x}{m} + \dfrac{y}{n} + \dfrac{z}{p} \) . Rút gọn A=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

Đặt \(\dfrac{x}{m} + \dfrac{y}{n} + \dfrac{z}{p} = k\)

<=> \(\dfrac{x}{m} =k <=> x = mk \)

<=> \(\dfrac{y}{n} = k <=> y =nk\)

<=> \(\dfrac{z}{p} = k <=> z = pk\)

Thay \(x = mk ; y=nk ; z=pk\) vào A , ta có :

\(\dfrac{(mk)^2+(nk)^2+(pk)^2}{(m^2k+n^2+p^2k)^2}\)

= \(\dfrac{m^2k^2+n^2k^2+p^2k^2}{(m^4k^2+n^4k^2+p^4k^2+2m^2n^2k^2+2n^2p^2k^2+2m^2p^2k^2)}\)

= \(\dfrac{k^2(m^2+n^2+p^2}{k^2(m^4+n^4+p^4+2m^2n^2+2n^2p+2m^2p^2)}\)

= \(\dfrac{k^2(m^2+n^2+p^2}{k^2(m^2+n^2+p^2)^2}\)

= \(\dfrac{1}{m^2+n^2+p^2} \)

Vậy A = \(\dfrac{1}{m^2+n^2+p^2}\)

5 tháng 7 2017

Từ (1); (2) và (3) ta được:

\(ax+by+by+cz+cz+ax=5a+5b+5c\)

\(\Leftrightarrow2\left(ax+by+cz\right)=5\left(a+b+c\right)\)

\(\Rightarrow a+b+c=\dfrac{2\left(ax+by+cz\right)}{5}\)

Ta có:

\(ax+by=5a\)

\(\Leftrightarrow ax+by+cz=5c+cz\)

\(\Leftrightarrow ax+by+cz=c\left(z+5\right)\)

\(\Rightarrow\dfrac{1}{z+5}=\dfrac{c}{ax+by+cz}\) (3)

Tượng tự ta có:

\(\dfrac{1}{x+5}=\dfrac{a}{ax+by+cz}\) (4)

\(\dfrac{1}{y+5}=\dfrac{b}{ax+by+cz}\)(5)

Từ (3);(4)và (5) \(\Rightarrow\dfrac{1}{x+5}+\dfrac{1}{y+5}+\dfrac{1}{z+5}=\dfrac{a+b+c}{ax+by+cz}\)

\(=\dfrac{\dfrac{2\left(ax+by+cz\right)}{5}}{ax+by+cz}=\dfrac{2}{5}\)

Vậy:....

5 tháng 7 2017

\(x^2-9x+1=0\Rightarrow x=9x-1\)

Ta có:

\(V=\dfrac{x^4+x^2+1}{5x^2}\)

\(=\dfrac{\left(x^2\right)^2+x^2+1}{5x^2}\)

\(=\dfrac{\left(9x-1\right)^2+9x-1+1}{5\left(9x-1\right)}=\dfrac{81x^2-18x+1+9x-1+1}{5\left(9x-1\right)}=\dfrac{81\left(9x-1\right)-9x+1}{5\left(9x-1\right)}=\dfrac{729x-81-9x+1}{5\left(9x-1\right)}\)\(=\dfrac{720x-80}{5\left(9x-1\right)}=\dfrac{80\left(9x-1\right)}{5\left(9x-1\right)}=16\)

Áp dụng Bất đẳng thức: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (Tự chứng minh)

\(\Rightarrow C=\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2xz}=\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{3^2}=1\)Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

NV
29 tháng 6 2020

\(C=\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{3^2}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\)

22 tháng 8 2017

1)

\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)

22 tháng 8 2017

dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)

\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)

\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)

NV
13 tháng 4 2020

\(x^8+x^8+y^8+y^8+y^8+z^8+z^8+z^8\ge8\sqrt[8]{x^{16}y^{24}z^{24}}=8x^2y^3z^3\)

Tương tự: \(3x^8+2y^8+3z^8\ge8x^3y^2z^3\)

\(3x^8+3y^8+2z^8\ge8x^3y^3z^2\)

Cộng vế với vế:

\(8\left(x^8+y^8+z^8\right)\ge8\left(x^2y^3z^3+x^3y^2z^3+x^3y^3z^2\right)\)

\(\Leftrightarrow\frac{x^8+y^8+z^8}{x^3y^3z^3}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Dấu "=" xảy ra khi \(x=y=z\)