Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
a: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}=\dfrac{a}{a-b}\)
b: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\)
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k=\dfrac{a}{b}\)
c \(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)
\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}=\dfrac{a}{3a+b}\)
d: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2=\dfrac{ac}{bd}\)
Bài 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)
\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)
bạn cứ đặt công thức gốc là k sau đó thay vào các câu là được thui
đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a) \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
\(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\left(1\right)\)
\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\left(2\right)\)
từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
b) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2.k}{d^2,k}=\dfrac{b^2}{d^2}\)(3)
\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)(4)
từ (3) (4) \(\Rightarrow\)......
c) \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2}{d^2}\) (5)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2}{d^2}\left(6\right)\)
từ (5) (6)\(\Rightarrow\)...............
a, Ta có :
\(\dfrac{a}{c}=\dfrac{c}{b}=\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a\cdot c}{c\cdot b}=\dfrac{a}{b}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{a}{c}=\dfrac{c}{b}=\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{c^2+b^2}\left(2\right)\)
Từ (1) ; (2)⇒ĐPCM
b, Theo bài ra ta có :\(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)
Thay vào biểu thức và áp dụng công thức (b-a)(b+a)=\(b^2-a^2\)
\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b+a\right)\left(b-a\right)}{a^2+ab}=\dfrac{\left(b+a\right)\left(b-a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)
⇒ĐPCM
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)
5a
Ta có \(\dfrac{a}{b}=\dfrac{a^2}{b^2}\) ; \(\dfrac{c}{d}=\dfrac{c^2}{d^2}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\)=> \(\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\)=>\(\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}\)=\(\dfrac{a^2+c^2}{b^2+d^2}\)(T/c cuả dãy tỉ số bằng nhau)
=> ĐPCM
Xin lỗi nha mình nhầm đề. Nhưng bạn chỉ cần thay d bằng c là được.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,d=ck\)
a) \(\dfrac{a^2-b^2}{ab}=\dfrac{b^2k^2-b^2}{bk.b}=\dfrac{b^2\left(k^2-1\right)}{b^2.k}=\dfrac{k^2-1}{k}\) (1)
\(\dfrac{c^2-d^2}{cd}=\dfrac{d^2k^2-d^2}{dk.d}=\dfrac{d^2\left(k^2-1\right)}{d^2k}=\dfrac{k^2-1}{k}\) (2)
Tử (1) và (2) \(\Rightarrow\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)
b) \(\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(bk+b\right)^2}{b^2k^2+b^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{b^2\left(k^2+1\right)}\)
\(=\dfrac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\dfrac{\left(k+1\right)^2}{k^2+1}\) (1)
\(\dfrac{\left(c+d\right)^2}{c^2+d^2}=\dfrac{\left(dk+d\right)^2}{d^2k^2+d^2}=\dfrac{\left[d\left(k+1\right)\right]^2}{d^2\left(k^2+1\right)}\)
\(=\dfrac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\dfrac{\left(k+1\right)^2}{k^2+1}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(c+d\right)^2}{c^2+d^2}\)
Chúc bạn học tốt ♥v♥
Ta có \(\frac{a}{c}=\frac{c}{b}\)
=> c2 = ab
a) Ta có: \(\frac{a^{2} + c^{2}}{b^{2} + c^{2}}= \frac{a^{2} + ab}{b^{2} + ab}\) = \(\frac{a\left ( a + b \right )}{b(a + b)}= \frac{a}{b}\) (đpcm)
b) Ta có: \(\frac{b^{2} - a^{2}}{a^{2} + c^{2}}= \frac{\left ( b - a \right )\left ( b + a \right )}{a^{2} + ab}= \frac{\left ( b - a \right )\left ( b + a \right )}{a\left ( b + a \right )}= \frac{b - a}{a}\) (đpcm)
b2 - a2 = (b - a)(b + a) đây là HĐT nhé có dạng: A2 - B2 = (A - B)(A + B)