Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)
Ta đặt: \(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk
a) \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-\left(dk\right)^2}{c^2-d^2}=\dfrac{b^2k^2-d^2k^2}{c^2-d^2}=\dfrac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\)(1)
\(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2\left(c.d\right)}{cd}=k^2\) (2)
Từ (1) và (2) => \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
b) \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(ck-dk\right)^2}{\left(c-d\right)^2}=\dfrac{k^2\left(c-d\right)^2}{\left(c-d\right)^2}=k^2\) (3)
Từ (2) và (3) => \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\). Chúc bạn học tốt
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
a, Ta có: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)
\(\Rightarrow\dfrac{b^2.k}{d^2.k}=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b, Ta có:\(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}\)
\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}\)
\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
CHÚC BẠN HỌC TỐT!!
\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)( áp dụng tỉ lệ thức )
Ta đặt:
\(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk
a) \(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2.\left(c.d\right)}{c.d}=k^2\) (1)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(ck+dk\right)^2}{\left(c+d\right)^2}=\dfrac{k^2.\left(c+d\right)^2}{\left(c+d\right)^2}=k^2\) (2)
Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\dfrac{c^2k^2+d^2k^2}{c^2+d^2}=\dfrac{k^2.\left(c^2+d^2\right)}{c^2+d^2}=k^2\) (3)
Từ (1) và (3) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,d=ck\)
a) \(\dfrac{a^2-b^2}{ab}=\dfrac{b^2k^2-b^2}{bk.b}=\dfrac{b^2\left(k^2-1\right)}{b^2.k}=\dfrac{k^2-1}{k}\) (1)
\(\dfrac{c^2-d^2}{cd}=\dfrac{d^2k^2-d^2}{dk.d}=\dfrac{d^2\left(k^2-1\right)}{d^2k}=\dfrac{k^2-1}{k}\) (2)
Tử (1) và (2) \(\Rightarrow\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)
b) \(\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(bk+b\right)^2}{b^2k^2+b^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{b^2\left(k^2+1\right)}\)
\(=\dfrac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\dfrac{\left(k+1\right)^2}{k^2+1}\) (1)
\(\dfrac{\left(c+d\right)^2}{c^2+d^2}=\dfrac{\left(dk+d\right)^2}{d^2k^2+d^2}=\dfrac{\left[d\left(k+1\right)\right]^2}{d^2\left(k^2+1\right)}\)
\(=\dfrac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\dfrac{\left(k+1\right)^2}{k^2+1}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(c+d\right)^2}{c^2+d^2}\)
Chúc bạn học tốt ♥v♥
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}\)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)
Chúc bạn học tốt!!!
a)đặt \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k\(\Rightarrow\)a=bk, c=dk
\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (1)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (2)
từ (1),(2)\(\Rightarrow\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b)ta có:
\(\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)
câu c bn tự giải nhé dễ mak ahihihichúc bn hc tốt
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Thay vào ta có:
\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2\cdot k}{d^2\cdot k}=\dfrac{b^2}{d^2}\left(1\right)\)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)
\(=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\)
\(=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) suy ra: đpcm
Gia su \(\dfrac{a}{b}=\dfrac{c}{d}=k\)=> a=bk; c=dk
The vao ta co:
\(\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)<=>\(\dfrac{b^2\cdot k}{d^2\cdot k}=\dfrac{b^2\cdot k^2-b^2}{d^2\cdot k^2-d^2}\)<=>\(\dfrac{b^2}{d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}\)
=>\(\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\)
bạn sửa hộ mik \(\left(\dfrac{a^2+b^2}{c^2+d^2}\right)^2\) thành\(\dfrac{a^2+b^2}{c^2+d^2}\)nha!!
\(\dfrac{a}{b}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\\ \Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\\ \dfrac{a^2}{c^2}=\dfrac{a}{c}.\dfrac{a}{c}=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
Có thể dùng cách khác:v
a)\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=t\)(với t là 1 số thực bất kì thỏa mãn)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}=t^2\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=t^2\end{matrix}\right.\Rightarrowđpcm\)
Tương tự:v
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>a=bk và c=dk
ta có \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)\(\dfrac{ab}{cd}=\dfrac{bk.b}{bk.d}=\dfrac{b^2}{d^2}\)
=>\(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) (cùng =\(\dfrac{b^2}{d^2}\) ) (đpcm)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt: \(\dfrac{a}{c}=\dfrac{b}{d}=t\)
a) \(\left\{{}\begin{matrix}\dfrac{ab}{cd}=t^2\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\end{matrix}\right.\Rightarrowđpcm\)
b) \(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\left(\dfrac{a+b}{c+d}\right)^2=t^2\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}=t^2\end{matrix}\right.\Rightarrowđpcm\)
Vào đây: Câu hỏi của nguyen lan anh - Toán lớp 7 | Học trực tuyến
Có: a/b=c/d. Áp dụng T/c tỉ lệ thức, ta có:
a/c=b/d . Đặt a/c=b/d=k=> a=ck;b=dk
Rồi cứ thế thay vào (a) và (b) thì sẽ ra