\(\dfrac{a}{b}\)\(=\)\(\dfrac{b}{c}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

Với \(a,b,c\ne0\) ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=1\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)

\(a=b=c\Rightarrow\dfrac{a^{49}\times b^{51}}{c^{100}}=\dfrac{a^{49}\times a^{51}}{a^{100}}=\dfrac{a^{100}}{a^{100}}=1\)

Chúc bn học tốt banhbanhbanhbanhbanh

(Bài này phải đc gọi là "Ác mộng dấu bằng")

\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(\Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\)

=>-6a+5b=6a-5b

=>-12a=-10b

=>6a=5b

hay a/b=5/6

15 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)

\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)

Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).


16 tháng 7 2017

Đừng hỏi tên tôi Kcj ^ ^

27 tháng 7 2017

pn ơi hình như đề sai a+5/a-5 va b+6/b-6

27 tháng 7 2017

ta có : a+5/a-5=b+6/b-6
=> a+5/b+6=a-5/b-6
áp dụng dãy tỉ số bằng nhau ta được:
a+5/b+6=a-5/b-6 =(a+5+a-5)/(b+6+b-6)=(a+5-a+5)/(b+6-b+6)
=> 2a/2b = 10/12
=> a/b = 5/6

8 tháng 7 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\)

Nếu:

\(\dfrac{a+b}{a}=\dfrac{c+d}{c}\Leftrightarrow c\left(a+b\right)=a\left(c+d\right)\)

\(ac+bc=ac+ad\)

\(bc=ad\)

\(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\rightarrowđpcm\)

8 tháng 7 2017

Đặt \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k

=> a=k.b ; c=k.d

Ta có :

\(\dfrac{a+b}{a}\)=\(\dfrac{b.k+b}{b}\)=\(\dfrac{b.\left(k+1\right)}{b}\)=k+1 ( 1 )

\(\dfrac{c+d}{c}\)=\(\dfrac{d.k+d}{d}\)=\(\dfrac{d.\left(k+1\right)}{d}\)=k+1 ( 2 )

Từ (1) và (2) thì : \(\dfrac{a+b}{a}\)=\(\dfrac{c+d}{c}\)

30 tháng 10 2017

Từ a/b=c/d⇒a/c=b/d

Áp dụng tính chất dãy tỉ số bằng nhau

a/c=b/d=a+b/c+d

⇒a^3/c^3=b^3/d^3=(a+b)^3/(c+d)^3 (1)

Từ a^3/c^3=b^3/d^3=a^3-b^3/c^3-d^3 (2)

Từ (1) và (2)

⇒(a+b)^3/(c+d)^3=a^3-b^3/c^3-d^3

3 tháng 8 2017

a) \(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+....+\left(x+\dfrac{1}{9900}\right)\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow50x+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=1\)

\(\Leftrightarrow50x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1\)

\(\Leftrightarrow50x+\left(1-\dfrac{1}{100}\right)=1\)

\(\Leftrightarrow50x+\dfrac{99}{100}=1\)

\(\Leftrightarrow50x=\dfrac{1}{100}\Rightarrow x=\dfrac{1}{5000}\)

b) \(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+...+\dfrac{3^2}{202.205}\)

\(A=\dfrac{3^2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{202}-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\left(1-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\dfrac{204}{205}=\dfrac{615}{205}\)

3 tháng 8 2017

a) \(\left(x+\dfrac{1}{2}\right)+\left(x+\dfrac{1}{6}\right)+\left(x+\dfrac{1}{12}\right)+....+\left(x+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\right)=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)=1\)

Có tất cả : (99 - 1) : 1 + 1 = 99 (số x)

\(\Rightarrow99x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=1\)

\(\Rightarrow99x+\left(1-\dfrac{1}{100}\right)=1\)

\(\Rightarrow99x+\dfrac{99}{100}=1\Rightarrow99x=1-\dfrac{99}{100}\)

\(\Rightarrow99x=\dfrac{1}{100}\Rightarrow x=\dfrac{1}{100.99}=\dfrac{1}{9900}\)

b) \(A=\dfrac{3^2}{1.4}+\dfrac{3^2}{4.7}+\dfrac{3^2}{7.10}+....+\dfrac{3^2}{202.205}\)

\(A=\dfrac{3^2}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{202}-\dfrac{1}{205}\right)\)

\(A=\dfrac{9}{3}\cdot\left(1-\dfrac{1}{205}\right)\)

\(A=3\cdot\dfrac{204}{205}=\dfrac{615}{205}\)

24 tháng 3 2017

Xét 2 t.h là ra mà bn : a âm - b dương

a dương -b âm ( loại vì thế k thỏa mãn bài )

26 tháng 3 2017

minhf cũng làm theo cach này nhưng cô bảo là chưa chắc đã dc điểmkhocroi

12 tháng 6 2017

Đặt\(a+c=2b\left(1\right);2bd=c\left(b+d\right)\left(2\right)\\ \)

Thay (1) vào (2):\(\left(a+c\right)d=c\left(b+d\right)\)

Khai triển hết ra r rút gọn là ok.

12 tháng 6 2017

Son Goku bạn giải hết ra giúp mik đi mik chậm hỉu lắm giúp mik đi mà!khocroi