K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

Sửa: \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Áp dụng tc dtsbn:

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\Rightarrow\dfrac{a+b}{a+c}=\dfrac{a-b}{c-a}=\dfrac{a+b-a+b}{a+c-c+a}=\dfrac{2b}{2a}=\dfrac{b}{a}\)

Lại có \(\dfrac{a+b}{a+c}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{a+c+c-a}=\dfrac{2a}{2c}=\dfrac{a}{c}\)

Vậy ta lập đc tỉ lệ thức \(\dfrac{a}{c}=\dfrac{b}{a}\)

3 tháng 8 2017

kêu bn nhất sông núi ra chỉ cho vì phạm văn nhất chính là nhất sông núi mà

3 tháng 8 2017

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)\(\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 1 )

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{c}=\frac{b}{a}\)

17 tháng 6 2017

surf trc khi hỏi

17 tháng 6 2017

ko thik surf trc khi ? đấy bn có ý gì ko nếu bn ko thik trả lời thì thôi mik ko ép chứ mik thik hỏi gì thì kệ mik mong Ace Legona hiểu cho.hihi

18 tháng 4 2017

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\) suy ra \(\dfrac{a}{c}=\dfrac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

Suy ra: \(\dfrac{a+b}{a-c}=\dfrac{c+d}{c-d}\)


11 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk\)\(c=dk\)

Nên \(\dfrac{a+b}{c-d}=\dfrac{bk+b}{dk-d}=\dfrac{b\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\Rightarrow\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) (với \(a-b\ne0,c-d\ne0\))

Vậy \(\dfrac{a}{b}=\dfrac{c}{d}thì\)\(\dfrac{a+b}{c-d}=\dfrac{c+d}{c-d}\) ( \(a-b\ne0,c-d\ne0\))

Bài 3: 

1;3;9;27

=>lập được 4 tỉ lệ thức

1;9;27;243

=>Lập được 4 tỉ lệ thức

1;3;81;243

=>Lập được 4 tỉ lệ thức

Bài 2: 

a: 6/8=24/x

=>24/x=3/4

=>x=32

b: Có thể lập được 4 tỉ lệ thức

1 tháng 7 2017

Ta có :

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\text{ }\Rightarrow\text{ }\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\text{ }\left(1\right)\)

Mặt khác :

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\text{ }\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra \(\frac{a}{c}=\frac{b}{a}\)