K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(\dfrac{a+3}{a-3}=\dfrac{b+4}{b-4}\)

=>(a+3)(b-4)=(a-3)(b+4)

=>ab-4a+3b-12=ab+4a-3b-12

=>-4a+3b=4a-3b

=>-8a=-6b

=>\(4a=3b\)

=>\(\dfrac{a}{3}=\dfrac{b}{4}=k\)

=>a=3k; b=4k

\(D=\dfrac{a^3+3^3}{b^3+4^3}=\dfrac{\left(3k\right)^3+3^3}{\left(4k\right)^3+4^3}\)

\(=\dfrac{3^3\left(k^3+1\right)}{4^3\left(k^3+1\right)}=\dfrac{3^3}{4^3}=\dfrac{27}{64}\)

9 tháng 6 2017

Sau khi thực hiện phép tính ta được kết quả các giá trị:

\(A=\dfrac{1}{3}\) \(B=-5\dfrac{5}{12}\) \(C=-0,22\)

Sắp xếp: \(-5\dfrac{5}{12}< -0,22< \dfrac{1}{3}\) tức là \(B< C< A\)

28 tháng 8 2017

Khi tính xong giá trị biểu thức A , B và C ta được kết quả như sau :

\(A=\dfrac{1}{3}\) ; \(B=-5\dfrac{5}{12}\); \(C=-0,22\)

Sắp xếp : \(B< C< A\)\(\left(-5\dfrac{5}{12}< -0,22< \dfrac{1}{3}\right)\)

18 tháng 6 2019

day la cac tinh chat ma

18 tháng 6 2019

ê mk cần câu trả lời cho bài trên okibucquabucminh

4 tháng 9 2018

\(A=\dfrac{5}{4}\left(5-\dfrac{4}{3}\right)\left(-\dfrac{1}{11}\right)\)

\(A=\dfrac{5}{4}.\dfrac{11}{3}.\left(-\dfrac{1}{11}\right)\)

\(A=-\dfrac{5}{12}\)

\(B=\dfrac{3}{4}:\left(-12\right).\left(-\dfrac{2}{3}\right)\)

\(B=\dfrac{3}{4}.\left(-\dfrac{1}{12}\right).\left(-\dfrac{2}{3}\right)\)

\(B=\dfrac{1}{24}\)

\(C=\dfrac{5}{4}:\left(-15\right).\left(-\dfrac{2}{5}\right)\)

\(C=\dfrac{5}{4}.\left(-\dfrac{1}{15}\right).\left(-\dfrac{2}{5}\right)\)

\(C=\dfrac{1}{30}\)

\(D=\left(-3\right)\left(\dfrac{2}{3}-\dfrac{5}{4}\right):\left(-7\right)\)

\(D=\left(-3\right)\left(-\dfrac{7}{12}\right)\left(-\dfrac{1}{7}\right)\)

\(D=-\dfrac{1}{4}\)

Sắp xếp theo thứ tự tăng dần:

\(A,D,C,B\)

14 tháng 9 2017

A=\(\dfrac{5}{4}\).(5-\(\dfrac{4}{3}\)).(\(-\dfrac{1}{11}\))

= \(\dfrac{5}{4}\).\(\dfrac{11}{3}\).(\(-\dfrac{1}{11}\))

=\(\dfrac{5}{4}\).[\(\dfrac{11}{3}.\left(-\dfrac{1}{11}\right)\text{]}\)

=\(\dfrac{5}{4}.\dfrac{1}{3}\)

=\(\dfrac{5}{12}\) (1)

B=\(\dfrac{3}{4}:\left(-12\right).\left(-\dfrac{2}{3}\right)\) =\(\dfrac{3}{4}:\text{[}\left(-12\right).\left(-\dfrac{2}{3}\right)\text{]}\)

=\(\dfrac{3}{4}:8\) =\(\dfrac{3}{4}.\dfrac{1}{8}\)=\(\dfrac{3}{32}\)(2)

C=\(\dfrac{5}{4}:\left(-15\right).\left(-\dfrac{2}{5}\right)\) =\(\dfrac{5}{4}:\text{[}\left(-15\right).\left(-\dfrac{2}{5}\right)\text{]}\)

=\(\dfrac{5}{4}:6=\dfrac{5}{4}.\dfrac{1}{6}=\dfrac{5}{24}\left(3\right)\)

D=(-3).\(\left(\dfrac{2}{3}-\dfrac{5}{4}\right):\left(-7\right)\) =(-3).\(\left(-\dfrac{7}{12}\right)\):(-7)=\(\dfrac{7}{4}:\left(-7\right)\)=\(\dfrac{7}{4}\).\(\left(\dfrac{-1}{7}\right)\)=\(\dfrac{-1}{4}\) (4)

Từ (1),(2),(3)và(4)=>Ta có thể sắp xếp các kết quả trên theo thứ tự tăng dần là:

(Bạn tự làm nhé! mình bận đi học rồileuleu)

18 tháng 4 2017

\(A=-5,13:\left(5\dfrac{5}{28}-1\dfrac{8}{9}.1,25+1\dfrac{16}{63}\right)\)

\(=-5,13:\left(\dfrac{145}{28}-\dfrac{17}{9}.\dfrac{125}{100}+\dfrac{79}{63}\right)\)

\(=-5,13:\left(\dfrac{145}{28}-\dfrac{17}{9}.\dfrac{5}{4}+\dfrac{79}{63}\right)\)

\(=-5,13:\left(\dfrac{145}{28}-\dfrac{85}{36}+\dfrac{79}{63}\right)\)

\(=-5,13:\dfrac{57}{14}=-5,13:\dfrac{15}{57}\)

\(=\dfrac{-71,82}{57}=1,26\)

Vậy \(A=1,26\)

\(B=\left(3\dfrac{1}{3}.1,9+19,5:4\dfrac{1}{3}\right).\left(\dfrac{62}{75}-\dfrac{4}{25}\right)\)

\(=\left(\dfrac{10}{3}.1,9+19,5:\dfrac{13}{3}\right).\left(\dfrac{62-12}{75}\right)\)

\(=\left(\dfrac{19}{3}+\dfrac{58,5}{13}\right).\dfrac{50}{75}\)

\(=\left(\dfrac{19}{3}+4,5\right).\dfrac{2}{3}\)

\(=\dfrac{32,5}{3}.\dfrac{2}{3}=\dfrac{65}{9}=7\dfrac{2}{9}\)

Vậy \(B=7\dfrac{2}{9}\)

21 tháng 10 2017

quá đúng và cũng quá chuẩn!!!!!!!!!yeueoeoyeu

\(A=\dfrac{5}{4}\cdot\dfrac{15-4}{3}\cdot\dfrac{-1}{11}=\dfrac{5}{4}\cdot\dfrac{11}{3}\cdot\dfrac{-1}{11}=\dfrac{-5}{12}\)=-50/120

\(B=\dfrac{3}{4}\cdot\dfrac{-1}{12}\cdot\dfrac{-2}{3}=\dfrac{3\cdot2}{4\cdot12\cdot3}=\dfrac{2}{4\cdot12}=\dfrac{1}{24}\)=5/120

\(C=\dfrac{5}{4}\cdot\dfrac{-1}{15}\cdot\dfrac{-2}{5}=\dfrac{2}{4\cdot15}=\dfrac{1}{30}\)=4/120

\(D=3\cdot\dfrac{8-15}{12}\cdot\dfrac{-1}{7}=\dfrac{1}{4}\)=30/120

Vì -50<4<5<30

nên A<C<B<D

3 tháng 11 2017

Ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhay ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\)

\(\Rightarrow\dfrac{a^3+b^3}{c^3+d^3}=\left(\dfrac{a+b}{c+d}\right)^3\)

\(\Rightarrowđpcm\)

3 tháng 11 2017

thank you nha

Vì A= \(\frac{605}{36}\)

B=\(\frac{-1}{24}\)

C=\(\frac{-1}{30}\)

D= \(\frac{-1}{4}\)

tức là  : A= \(\frac{6050}{360}\)

B=\(\frac{-15}{360}\)

C=\(\frac{-12}{360}\)

D=\(\frac{-90}{360}\)

nÊN được sắp xếp theo thứ tự tăng dần là B < C  < D < A

D=

17 tháng 6 2017

Bài 1:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)

\(\Rightarrowđpcm\)

b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)

\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)

\(\Rightarrowđpcm\)

d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)

\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

e, Sai đề

f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)

\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

17 tháng 6 2017

Hâm mộ :)))))