Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Bạn tham khảo cách làm tương tự tại đây:
https://hoc24.vn/cau-hoi/cho-dfracab-2017ccdfracbc-2017aadfracca-2017bbvoi-a-b-c-ne0-tinhp-left1dfracabrightleft1dfracb.161494910584
Kết quả $P=8$ hoặc $P=-1$
E xin lỗi, e ko nhận câu trả lời này vì có chứa link tới các web khác
\(\dfrac{b+c-5}{a}=\dfrac{a+c+2}{b}=\dfrac{a+b+3}{c}=\dfrac{2a+2b+2c}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}b+c-5=2a\\a+c+2=2b\\a+b+3=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c=a+5\\a+b+c=b-2\\a+b+c=c-3\end{matrix}\right.\)
Lại có \(\dfrac{1}{a+b+c}=2\Rightarrow a+b+c=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}a+5=\dfrac{1}{2}\\b-2=\dfrac{1}{2}\\c-3=\dfrac{1}{2}\end{matrix}\right.\)
Từ đó tự giải ra
Theo đề bài thì:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
\(=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}\)
\(=\dfrac{\left(a+b+b+c+c+a\right)-a-b-c}{c+a+b}\)
\(=\dfrac{a+b+c}{c+a+b}=1\)
Nên: \(\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\)
Mà
\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
\(P=\left(\dfrac{a}{a}+\dfrac{b}{a}\right)\left(\dfrac{b}{b}+\dfrac{c}{b}\right)\left(\dfrac{c}{c}+\dfrac{a}{c}\right)\)
\(P=\left(\dfrac{a+b}{a}\right)\left(\dfrac{b+c}{b}\right)\left(\dfrac{c+a}{c}\right)\)
\(P=\left(\dfrac{b+c-a+c+a-b}{a}\right)\left(\dfrac{c+a-b+a+b-c}{b}\right)\left(\dfrac{a+b-c+b+c-a}{c}\right)\)
\(P=\dfrac{2c}{a}.\dfrac{2a}{b}.\dfrac{2b}{c}=\dfrac{8ab}{abc}=8\)
Vậy \(P=8\)
\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
Khi đó \(P=\dfrac{-abc}{abc}=-1\)
Với \(a+b+c\ne0\) ,áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\a+c=2b\end{matrix}\right.\)
Khi đó \(P=\dfrac{8abc}{abc}=8\)
Lưu ý: Ko buff bẩn + ko spam + ko copy + ko nhận những câu trả lời chứa link tới các web khác + phải có lời giải thích đàng hoàng + vv
b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)
Trần Thọ Đạt ông giải dùm đi!Bn ý k bk tag nên tui tag dùm!
Trần Thọ Đạt, giải giúp mình