Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\Rightarrow\dfrac{1}{2}.\dfrac{a}{b}=\dfrac{1}{2}.\dfrac{b}{c}=\dfrac{1}{2}.\dfrac{c}{d}=\dfrac{1}{2}.\dfrac{d}{a}\)
⇒ \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
⇒ \(a=b=c=d\)
Thay b = a ; c = a ; d = a vào biểu thức A ta có:
\(A=\dfrac{2011a-2010a}{2a}+\dfrac{2011a-2010a}{2a}+\dfrac{2011a-2010a}{2a}+\dfrac{2011a-2010a}{2a}\)
\(A=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}\)
\(A=\dfrac{1}{2}.4=2\)
Vậy A = 2
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2a+2b+2c+2d}=\dfrac{1}{2}\)
=>\(\dfrac{a}{2b}=\dfrac{1}{2}\)=>2a=2b =>a=b
\(\dfrac{b}{2c}=\dfrac{1}{2}\)=>2b=2c =>b=c
\(\dfrac{c}{2d}=\dfrac{1}{2}\)=>2c=2d =>c=d
\(\dfrac{d}{2a}=\dfrac{1}{2}\)=>2d=2a =>d=a
=>a=b=c=d.
*\(\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
=\(\dfrac{2011a-2010a}{a+a}+\dfrac{2011a-2010a}{a+a}+\dfrac{2011a-2010d}{a+a}+\dfrac{2011a-2010a}{a+a}\)
=\(\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}\)=2
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2(a+b+c+d)}=\frac{1}{2}\)
\(\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=1\Leftrightarrow a=b=c=d\)
Do đó:
\(A=\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)
\(\Leftrightarrow A=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)
Vậy \(A=2\)
Ta có: \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
\(\Rightarrow a=b;b=c;c=d;d=a\)
\(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
\(A=\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}\)
\(A=\dfrac{c+c+c+c}{c+c}=2\)
Vậy ....................
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
( theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\cdot2b\\b=\dfrac{1}{2}\cdot2c\\c=\dfrac{1}{2}\cdot2d\\d=\dfrac{1}{2}\cdot2a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\)
\(\Rightarrow P=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=2\)
ta có :\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
suy ra:\(a=b;b=c;c=d;d=a\)
\(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
\(A=\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}\)
\(A=\dfrac{c+c+c+c}{c+c}=2\)
vậy giá trị của A là 2
ta có \(\dfrac{ }{ }\)\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{a}{2b}=\dfrac{1}{2}\)\(\Rightarrow\)a = b
tương tư b=c ;c = d
\(\Rightarrow\) a = b = c =d
A = \(\dfrac{2011a-2010a}{a+a}+\dfrac{2011b-2010b}{b+b}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011d-2010d}{d+d}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)
với dạng toán này, khi nhìn vào bn thấy ở trên tử có a;b;c;d ở duoi mẫu có a;b;c;d là bn nghĩ ngay cách tính hệ số k mà trog tlt, bit k r thì cái j chẳng tính dc, mai thi xong mk cho đề
\(\frac{a}{2b}\)=\(\frac{b}{2c}\) =\(\frac{c}{2d}\) =\(\frac{d}{2a}\)=\(\frac{a+b+c+d}{2a+2b+2c+2d}\)=\(\frac{a+b+c+d}{2\left(a+b+c+d\right)}\)=\(\frac{1}{2}\)
quên rùi............................
đáp số =2
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
\(\Rightarrow a=\frac{2b}{2}=b\) \(c=\frac{2d}{2}=d\)
\(b=\frac{2c}{2}=c\) \(d=\frac{2a}{2}=a\)
\(\Rightarrow a=b=c=d\)
Ta có: \(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)
\(=\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}\)
\(=\frac{4a}{2a}=2\)
A ₫ 2 day ban so yeoung cheing nhe. Cac ban kcho mik nha
Từ \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\Rightarrow\dfrac{1}{2}\cdot\dfrac{a}{b}=\dfrac{1}{2}\cdot\dfrac{b}{c}=\dfrac{1}{2}\cdot\dfrac{c}{d}=\dfrac{1}{2}\cdot\dfrac{d}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
Thay \(b=a;c=a;d=a\) vào biểu thức A ta có;
\(A=\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}\)
\(A=\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}\)
\(A=\dfrac{1}{2}\cdot4=2\)
Vậy \(A=2\)
tks bạn, lúc nào mk hỏi bạn cx trl