\(\Delta\)ABC vuông tại A, đường cao AH. Kẻ HE và HF lần lượt vuông góc với AB, AC.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

Hình bạn tự vẽ nha, thanks haha

a)Trong tam giác ABC vuông tại A, có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+9^2}=\sqrt{117}=3\sqrt{13}\)

\(\tan B=\frac{AC}{AB}=\frac{9}{6}=\frac{3}{2}\Rightarrow\widehat{B}=56^019'\)

\(\Rightarrow\widehat{C}=90^o-\widehat{B}=90^o-56^o19'=34^o41'\)

b)Ta có: AEHF là hình chữ nhật vì \(\widehat{EAF}=\widehat{AEH}=\widehat{AFH}=90^o\)

\(\Rightarrow EF=AH\)

Lại có:\(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.9}{3\sqrt{13}}=\frac{18\sqrt{13}}{13}\)

Do đó:\(EF=AH=\frac{18\sqrt{13}}{13}\)

c)Ta có: \(\left\{{}\begin{matrix}AE.AB=AH^2\\AF.AC=AH^2\end{matrix}\right.\Rightarrow AE.AB=AF.AC\)

d)Ta có:\(\left\{{}\begin{matrix}\widehat{MEH}+\widehat{HEF}=90^o\\\widehat{MHE}+\widehat{EHA}=90^o\\\widehat{HEF}=\widehat{EHA}\end{matrix}\right.\)\(\Rightarrow\widehat{MEH}=\widehat{MHE}\)

\(\Rightarrow\Delta EHM\) cân tại M

\(\Rightarrow EM=MH\)(1)

Lại có:\(\widehat{BEM}+\widehat{MEF}+\widehat{AEF}=180^o\)

\(\Rightarrow\widehat{BEM}+\widehat{AEF}=180^o-\widehat{MEF}=180^o-90^o=90^o\)

Ta cũng có:\(\widehat{B}+\widehat{C}=90^o\)

\(\widehat{C}=\widehat{HAE}\)(cùng phụ với góc HAC)\(=\widehat{AEF}\)

Do đó:\(\widehat{BEM}=\widehat{B}\)

\(\Rightarrow\Delta BEM\) cân tại M

\(\Rightarrow BM=ME\)(2)

Từ (1) và (2) ta suy ra \(BM=HM\left(=EM\right)\)

Vậy M là trung điểm của BH

Tương tự với N nha :DD

e)\(EM=\frac{1}{2}BH=\frac{1}{2}.\frac{AB^2}{BC}=\frac{1}{2}.\frac{6^2}{3\sqrt{13}}=\frac{6\sqrt{13}}{13}\)

\(FN=\frac{1}{2}HC=\frac{1}{2}.\frac{AC^2}{BC}=\frac{1}{2}.\frac{9^2}{3\sqrt{13}}=\frac{27\sqrt{13}}{26}\)

f)Vì EM//NF(cùng vuông góc với EF)

nên EFNM là hình thang

\(\Rightarrow S_{EFNM}=\frac{1}{2}\left(EM+FN\right).EF=\frac{1}{2}\left(\frac{6\sqrt{13}}{13}+\frac{27\sqrt{13}}{26}\right).\frac{18\sqrt{13}}{13}=13,5\left(đv^2\right)\)

*Nhớ ghi đơn vị là cm hay m gì đó nha, không có đơn vị thấy thiếu thốn cái gì ấy :DD

*Đoạn thẳng có độ dài xấu mà diện tích lại đẹp, không thể tin nổi :DD

*Đang làm đề nên làm hơi chậm :), có gì sai nhớ nhắc mình nha :DD

26 tháng 10 2019

Hệ thức lượng trong tam giác vuông

Bạn tự vẽ hình nha =="

AC = AH + HC = 6 + 4 = 10 (cm)

mà AC = AB (tam giác ABC cân tại A)

=> AB = 10 (cm)

Tam giác HAB vuông tại H có:

AB2 = AH2 + BH(định lý Pytago)

102 = 62 + BH2

BH2 = 102 - 62

BH2 = 100 - 36

BH2 = 64

BH = 8 (cm)

Tam giác HBC vuông tại H có:

BC2 = BH2 + CH2

BC2 = 82 + 42

BC2 = 64 + 16

BC2 = 80

BC = 80(cm)80(cm)

Chúc bạn học tốt ^^

Thu gọn
Đúng 0
Bình luận
 
12 tháng 3 2017 lúc 20:14
 
 

Bạn tự vẽ hình nha. Cũng đơn giản lắm....

Xét hai tam giác vuông AHB và BHC có :

AH = HC (= 6cm)

HB là cạnh chung

Do đó : ΔAHB=ΔCHBΔAHB=ΔCHB(cạnh - góc - cạnh)

=> BC = AB ( hai cạnh tương ứng)

Mà AB = AC ( định nghĩa tam giác cân)

=> BC = AB = AH+CH= 12cm

 
31 tháng 5 2020

câu b làm kiểu gì vậy ạ?

3 tháng 6 2020

Câu b: Tam giác AHB vuông tại H, đường cao AH

=> AD.BD=DH2

Tương tự: AE.EC=HE2

=> AD.BD+AE.EC=DH2+HE2

=DE2 (Pytago)

=AH2 (ADHE là hình chữ nhật vì có 3 góc vuông)

11 tháng 7 2019

G A B C N M E F

a) Gọi F' là giao điểm của AE và BC

MN//BC => \(\frac{MN}{BC}=\frac{AN}{AC}\)

NE//F'C => \(\frac{EN}{FC}=\frac{AN}{AC}\)

=> \(\frac{EN}{F'C}=\frac{MN}{BC}=\frac{2EN}{2FC}=\frac{EN}{FC}\Rightarrow F'C=FC\)

mà F', F cùn thuộc cạnh BC

=> F' trùng F

=> A, E, F thẳng hàng

b) Xét tam giác BNC có: Flaf trung điểm BC; G là trung điểm BN

=> FG là đường trung bình tam giác BNC

=> FG//=1/2 NC

=> FG=9:2=4,5 cm

Xét tam giác BNM tương tự

có: EG//=1/2 BM 

=> EG=12:2=6 cm

Ta lại có: EG//BM => EG//AB

FG //NC => FG//AC

Mà AB vuông AC

=> EG vuông FG

=> Tam giác EGF vuông tại G có: FG=4,5 cm và EG=6 cm

Áp dụng định lí pitago: 

=> \(EF^2=GE^2+GF^2=4,5^2+6^2=7,5^2\)

=> EF=7,5

\(\widehat{EGF}=90^o\)

\(\cos\widehat{GEF}=\frac{GE}{EF}=\frac{6}{7,5}=\frac{4}{5}\Rightarrow\widehat{GEF}=arcos\frac{4}{5}\)

\(\cos\widehat{GFE}=\frac{GF}{EF}=\frac{4,5}{7,5}=\frac{3}{5}\Rightarrow\widehat{GFE}=arcos\frac{3}{5}\)

c) Ta có: MN//BC 

=> \(\frac{BM}{AB}=\frac{CN}{AC}\Rightarrow\frac{AB}{AC}=\frac{BM}{CN}=\frac{2GE}{2GF}=\frac{GE}{GF}\)

Xét tam giác vuông GEF và tam giác vuông ABC 

có: \(\frac{AB}{AC}=\frac{GE}{GF}\)

=> tam giác GEF đồng dạng với tam giác ABC

26 tháng 11 2016

a) ta có : O là trung điểm của AH

xét đường tròn tâm O,có:E thuộc đường tròn

→tam giác A,E,H vuông tại E (t/c đường tròn)

F thược đường tròn

→tam giác A,F,H vuông tại F (t/c đường tròn)

Xét tứ giác A,E,H,F ta có Â =90 (ΔA,B,C vuông tại A)

Ê = F =90 (Δ vuông )

→tứ giác A,E,H,F là hình chữ nhật