\(\Delta\)ABC vuông ở A. Đường cao AH. Kẻ HK\(\perp\)AB,K...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 7 2021

Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}\Rightarrow AH=4,8\left(cm\right)\).

\(BC^2=AB^2+AC^2\)(định lí Pythagore) 

\(=6^2+8^2=100\)

\(\Rightarrow BC=10\left(cm\right)\)

\(HC=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\left(cm\right)\)

\(HB=BC-HC=10-6,4=3,6\left(cm\right)\)

Xét tam giác \(AHB\)vuông tại \(H\)đường cao \(HQ\)

\(AQ=\frac{AH^2}{AB}=\frac{4,8^2}{6}=3,84\left(cm\right)\)

Xét tam giác \(ACQ\)vuông tại \(A\)

\(CQ^2=AC^2+AQ^2=8^2+3,84^2\Rightarrow CQ=\frac{8\sqrt{769}}{25}\left(cm\right)\)

10 tháng 9 2020

A B C

a, Xét tam giác ABC vuông tại A, áp dụng định lí Pytago ta có:

BC= AB2 + AC2

BC= 21+ 722

BC= 5625

BC = 75 (cm)

b, Tam giác ABC vuông tại A, đường cao AH

Ta có: AB2 = BH . BC (định lí 1)

           212 = BH . 75

           BH = 441 : 75

           BH = 5,88 (cm)

Ta có : BC = BH + HC

            75 = 5,88 + HC

            HC = 75 - 5,88

            HC = 69,12 (cm)

Ta có: AH2 = BH . HC

          AH2 = 5,88 . 69,12

          AH2 = 406,4256

          AH = 20,16 (cm)

c, (Bạn tự vẽ tia p/g nha)

Theo tính chất đường phân giác góc B ta có:

=> AD/ DC = AB/ BC

=> AD/ AB = DC/BC

=> AD/ 21 = DC/ 75

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

AD/21 = DC/ 75 = AD + DC/ 21 + 75 = AC/ 96 = 72/ 96 = 3/4

=> AD/ 21 = 3/4 => AD = 15,75 (cm)

=> DC/ 75 = 3/4 => DC = 56, 25 (cm)

Mình không biết bạn có đánh sai số hay không mà số chênh nhau lớn quá, nếu bạn đánh sai thì chỉ cần thay số trong bài mình làm cho bạn là được nha :33

CHÚC BẠN HỌC TỐT !!!

24 tháng 6 2019

X A B C H 25cm AB/AC=3/4

16 tháng 10 2020

SINB=AC/BC=8/10=4/5

=> GÓC B = XẤP XỈ 53'.

=> GÓC C=37'.

C)CÓ AB.AC=AH.BC

<=> 6.8=AH.10

<=>AH=6.8/10=4,8 .

LẠI CÓ BC.HB=AB2

<=> HB=AB2/BC

<=>HB=36/10=3,6. 

=>HC=BC-HB=10-3,6=6,4. 

a: góc B=90-40=50 độ

Xét ΔABC vuông tại A có \(AB=BC\cdot sin40^0=6.43\left(cm\right)\)

=>AC=7,66(cm)

b: \(BD\cdot EC\cdot BC\)

\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot BC\)

\(=\dfrac{AH^4}{AH}=AH^3\)

16 tháng 6 2019

a) Nếu \(AM\perp DE\) thì ADME là hình vuông, suy ra AD = AE

Suy ra AB = AC

Áp dụng định lí Pytago vào hai tam giác vuông ABH và ACH, ta thấy AB < AC

Vậy KHÔNG thể chứng minh được :|

16 tháng 11 2022

a: \(\dfrac{EB}{FC}=\dfrac{BH^2}{BA}:\dfrac{CH^2}{AC}\)

\(=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)

b: \(HE=\sqrt{16\cdot9}=12\left(cm\right)\)

\(AH=\sqrt{16\cdot25}=20\left(cm\right)\)