K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

a, Ta có : \(5A=3B=15C\Rightarrow\frac{5A}{15}=\frac{3B}{15}=\frac{15C}{15}\Rightarrow\frac{A}{3}=\frac{B}{5}=C\)

và \(A+B+C=180^0\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{A}{4}=\frac{B}{5}=C=\frac{A+B+C}{4+5+1}=\frac{180}{10}=18\Rightarrow A=72^0;B=90^0;C=18^0\)

b, Do AD là tia phân giác ^A => \(\widehat{BAD}=\frac{1}{2}\widehat{A}=\frac{72}{2}=36^0\)

Lại có : \(\widehat{BAD}+\widehat{ADB}+\widehat{ABD}=180^0\)( tổng số đo 3 góc trong tam giác )

\(\Rightarrow\widehat{ADB}=180^0-\widehat{BAD}-\widehat{ABD}=180^0-90^0-36^0=54^0\)

5 tháng 2 2022

nhầm r theo tính chất dãy tỉ số bằng nhau thì phải là A/3

 

14 tháng 8 2017

5A =3B =15C                                                                                                                                                                                                       => 5A/15=3B/15=15C/15=A/3=B/5=C/1 Ap dung tinh chat dãy tỉ số= nhau ta có                                                                                                    A/3=B/5=C/1=A+B=C /3+5+1 = 180/9 =20                                                                                                                                                      => .....A=60 ......B=100 .......C=20 

THANKS

7 tháng 11 2019

không giải câu b à

31 tháng 12 2015

a/Ta có góc A+góc B+ góc C=180o(định lí)

Mà góc A=120o

--> góc B+ góc C=180o-120o=60o

Mà góc B-góc C=30o

--> góc C=(60-30)/2=15o

--> góc B=15o+30o=45o

 

 

31 tháng 12 2015

A C B 120 độ D E

Hơi xấu! THông cảm nhé!

22 tháng 10 2021

a: \(\widehat{ABC}=80^0\)

\(\widehat{ADB}=180^0-70^0-40^0=70^0\)

27 tháng 10 2021

còn góc BIC với CID nữa

 

30 tháng 1 2016

ta có : tổng ba góc của 1 tam giác bằng 180 độ => góc A = 180 -( b+c) = 180 - 100 = 80 

vì tia AD là tia phân giác của góc A nên : góc ADC = góc ADB = 1/2 góc A = 1/2. 80 =40 

 

30 tháng 1 2016

góc ADC = 600

góc ADB = 800

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Lời giải:
a. Xét tam giác $ABD$ và $AED$ có:

$AB=AE$ (gt)

$\widehat{BAD}=\widehat{EAD}$ (tính chất tia phân giác)

$AD$ chung

$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra $BD=ED$ và $\widehat{ABD}=\widehat{AED}$

$\Rightarrow 180^0-\widehat{ABD}=180^0-\widehat{AED}$

$\Rightarrow \widehat{DBM}=\widehat{DEC}$

Xét tam giác $DBM$ và $DEC$ có:

$\widehat{BDM}=\widehat{EDC}$ (đối đỉnh)

$BD=ED$ (cmt)

$\widehat{DBM}=\widehat{DEC}$ (cmt)

$\Rightarrow \triangle DBM=\triangle DEC$ (g.c.g)

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Hình vẽ:

20 tháng 4 2017

a) ∆ADB và ∆ ACD có:

\(\widehat{B}\) =\(\widehat{C}\)(gt) (1)

\(\widehat{A1}\)=\(\widehat{A2}\)(AD là tia phân giác)

Nên \(\widehat{D1}\)=\(\widehat{D2}\)

AD cạnh chung.

Do đó ∆ADB=∆ADC(g.c.g)

b) ∆ADB=∆ADC(câu a)

Suy ra AB=AC .



8 tháng 1 2018

a Xét \(\Delta ADB\)\(\Delta ADC\) có :

AD : cạnh chung

\(\widehat{BAD}=\widehat{CAD}\) (gt)

Ta có : \(\widehat{BDA}+\widehat{DAB}+\widehat{ABD}=\widehat{CDA}+\widehat{DAC}+\widehat{ACD}\)

\(\Rightarrow\widehat{BDA}=\widehat{CDA}\)

\(\Rightarrow\Delta ADB=\Delta ADC\) (g . c . g)

b Vì \(\Delta ADB=\Delta ADC\)

\(\Rightarrow\) AB = AC

hiu