\(\Delta ABC\)vuông tại A(AB<AC),BD là đường phân giác.Vẽ \(D...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

a) Trong tam giác ABC, góc A = 90o (gt)

Ta có: BC2 = AB2 + AC2 ( Py ta go)

Hay: BC2 = 92 + 122

= 81 + 144

= 225

Vậy BC = \(\sqrt{225}\) = 15 cm

b) Xét tam giác ABD và tam giác EBD, có:

góc BAD = góc BED = 90o (gt)

BD: cạnh chung

góc ABD = góc EBD (gt)

=> Tam giác ABD = tam giác EBD (cạnh huyền-góc nhọn)

Nên AB = EB (2 cạnh tương ứng)

Trong tam giác ABE, AB = EB (cmt)\

Vậy tam giác ABE cân tại B ( 2 cạnh = nhau)

c)Ta có:AD = ED(2 cạnh t/ư do tam giác ABD = tam giác EBD) (1)

Trong tam giác ECD, góc E = 90o (gt)

=> CD lớn nhất (Quan hệ góc cạnh trong tam giác)

Do đó; CD > ED (2)

Từ (1), (2) => DA < DC (đpcm)

Câu d mk ko biết làm, mong bạn thông cảm cho mk nhé!

9 tháng 8 2018

GT:tam giác ABC; góc A =90 độ 

-BD là tia phân giác của góc  ABC

-DE vuông góc  BC ,E thuộc BC

-AB=9cm , AC=12cm

KL:BC =?;b)Tam giác DAE cân;c)DA<DC

CHỨNG MINH

a)Xét tam giác ABC vuông tại A (gt)

Ta có AB ^2 + AC^2=BC^2(Định lý Py-ta-go)

=>9^2+12^2=BC^2

81^2+144=255

=>BC^2=225=15^2

=>BC=15cm

b)Xét tam giác BAD và tam giác BED có 

Góc BAD = góc BED=90 độ

Góc B1=góc B2(vì BD là tia phân giác của góc ABC)

BA=BE(gt)

=>Tam giác BAD =Tam giác BED (Cạnh huyền-góc nhọn)

=.AD=DE(2 cạnh tương ứng )

=>Tam giác ADE cân tại D (định lý Tam giác cân)

c)Xét tam giác DEC có góc DEC=90 đọ

=>DC là cạnh huyền

=>DC là cạnh lớn nhất 

=>DC>DE [1]

Mà DE=DA(cmt)[2]

Từ 1 và 2 suy ra DC>DA

d)Xét BC có :

BA vuông góc DC=>BA là đường cao của Tam giác BDC

DE vuông góc =>DE là đường cao cảu tam giác BDC

CF vuông góc BD=>CF là đường cao của tam giác BDC

BA,DE,CF là đường cao của tam giác BDC

=>Chúng đồng quy

21 tháng 4 2021

a, xét tam giác abc vuông tại a có

ab^2 + ac^2= bc^2

9^2+12^2=bc^2

144=bc^2

BC=12cm

b,có gì mái mình giải tiếp giờ đi học rồi

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

26 tháng 4 2017

B A C D E F

a)Xét \(\Delta ABD\) và \(\Delta EDB\)có:

\(\widehat{BAD}=\widehat{BED}\left(=90\right);\widehat{ABD}=\widehat{EBD}\)và BD chung

\(\Rightarrow\Delta ABD=\Delta EDB\)(cạnh huyền - góc nhọn)

b) Từ câu a  => AD = EB(2 cạnh tương ứng)

\(\Rightarrow\Delta ADF=\Delta FDC\left(g-c-g\right)\)(Bạn tự CM nha)

=> DF = DC (2 cạnh tương ứng)

=> \(\Delta FDC\)cân tại D

26 tháng 4 2017

Câu b mình có cách khác nhưng chả biết bạn học tới chưa. Thôi cứ tham khảo nhé chứ cách bạn kia ngắn gọn lắm rồi

Cách mình chứng minh góc DFC = góc FCD

Xét tam giác ABC có 2 đường cao FE;AC cắt nhau tại D

=> D là trực tâm tam giác ABC

=> BD là đường cao thứ 3

=> BD vuông góc FC tại D

Xét tam giác BFC có BD vừa là phân giác vừa là đường cao

=> tam giác BFC cân tại B

=> góc BFC = góc BCF

Vì tam giác ABD = tam giác EDB => AD = DE (hai cạnh tương ứng)

Xét tam giác ADF và tam giác DEC có:

  góc ADF = góc EDC (đối đỉnh)

  góc DAF = góc DEC = 90 độ (gt)

  AD = DE (cmt)

=> tam giác ADF = tam giác EDC (g.c.g)

=> góc AFD = góc DCE (hai góc t.ứng)

Mà: góc BFC = góc BCF

=> góc DFC = góc DCF 

=> tam giác FDC cân tại F

Xong!! =)))