Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong tam giác ABC, góc A = 90o (gt)
Ta có: BC2 = AB2 + AC2 ( Py ta go)
Hay: BC2 = 92 + 122
= 81 + 144
= 225
Vậy BC = \(\sqrt{225}\) = 15 cm
b) Xét tam giác ABD và tam giác EBD, có:
góc BAD = góc BED = 90o (gt)
BD: cạnh chung
góc ABD = góc EBD (gt)
=> Tam giác ABD = tam giác EBD (cạnh huyền-góc nhọn)
Nên AB = EB (2 cạnh tương ứng)
Trong tam giác ABE, AB = EB (cmt)\
Vậy tam giác ABE cân tại B ( 2 cạnh = nhau)
c)Ta có:AD = ED(2 cạnh t/ư do tam giác ABD = tam giác EBD) (1)
Trong tam giác ECD, góc E = 90o (gt)
=> CD lớn nhất (Quan hệ góc cạnh trong tam giác)
Do đó; CD > ED (2)
Từ (1), (2) => DA < DC (đpcm)
Câu d mk ko biết làm, mong bạn thông cảm cho mk nhé!
GT:tam giác ABC; góc A =90 độ
-BD là tia phân giác của góc ABC
-DE vuông góc BC ,E thuộc BC
-AB=9cm , AC=12cm
KL:BC =?;b)Tam giác DAE cân;c)DA<DC
CHỨNG MINH
a)Xét tam giác ABC vuông tại A (gt)
Ta có AB ^2 + AC^2=BC^2(Định lý Py-ta-go)
=>9^2+12^2=BC^2
81^2+144=255
=>BC^2=225=15^2
=>BC=15cm
b)Xét tam giác BAD và tam giác BED có
Góc BAD = góc BED=90 độ
Góc B1=góc B2(vì BD là tia phân giác của góc ABC)
BA=BE(gt)
=>Tam giác BAD =Tam giác BED (Cạnh huyền-góc nhọn)
=.AD=DE(2 cạnh tương ứng )
=>Tam giác ADE cân tại D (định lý Tam giác cân)
c)Xét tam giác DEC có góc DEC=90 đọ
=>DC là cạnh huyền
=>DC là cạnh lớn nhất
=>DC>DE [1]
Mà DE=DA(cmt)[2]
Từ 1 và 2 suy ra DC>DA
d)Xét BC có :
BA vuông góc DC=>BA là đường cao của Tam giác BDC
DE vuông góc =>DE là đường cao cảu tam giác BDC
CF vuông góc BD=>CF là đường cao của tam giác BDC
BA,DE,CF là đường cao của tam giác BDC
=>Chúng đồng quy
a, xét tam giác abc vuông tại a có
ab^2 + ac^2= bc^2
9^2+12^2=bc^2
144=bc^2
BC=12cm
b,có gì mái mình giải tiếp giờ đi học rồi
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
B A C D E F
a)Xét \(\Delta ABD\) và \(\Delta EDB\)có:
\(\widehat{BAD}=\widehat{BED}\left(=90\right);\widehat{ABD}=\widehat{EBD}\)và BD chung
\(\Rightarrow\Delta ABD=\Delta EDB\)(cạnh huyền - góc nhọn)
b) Từ câu a => AD = EB(2 cạnh tương ứng)
\(\Rightarrow\Delta ADF=\Delta FDC\left(g-c-g\right)\)(Bạn tự CM nha)
=> DF = DC (2 cạnh tương ứng)
=> \(\Delta FDC\)cân tại D
Câu b mình có cách khác nhưng chả biết bạn học tới chưa. Thôi cứ tham khảo nhé chứ cách bạn kia ngắn gọn lắm rồi
Cách mình chứng minh góc DFC = góc FCD
Xét tam giác ABC có 2 đường cao FE;AC cắt nhau tại D
=> D là trực tâm tam giác ABC
=> BD là đường cao thứ 3
=> BD vuông góc FC tại D
Xét tam giác BFC có BD vừa là phân giác vừa là đường cao
=> tam giác BFC cân tại B
=> góc BFC = góc BCF
Vì tam giác ABD = tam giác EDB => AD = DE (hai cạnh tương ứng)
Xét tam giác ADF và tam giác DEC có:
góc ADF = góc EDC (đối đỉnh)
góc DAF = góc DEC = 90 độ (gt)
AD = DE (cmt)
=> tam giác ADF = tam giác EDC (g.c.g)
=> góc AFD = góc DCE (hai góc t.ứng)
Mà: góc BFC = góc BCF
=> góc DFC = góc DCF
=> tam giác FDC cân tại F
Xong!! =)))