K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a.

Xét tam giác IHK và tam giác ECK có:

IHK = ECK (=90)

KH = KC (K là trung điểm của HC)

K1 = K2 (2 góc đối đỉnh)

=> Tam giác IHK = Tam giác ECK (c.g.c) (1)

=> IH = CE (2 cạnh tương ứng) (2)

b.

Tam giác IHK = Tam giác ECK (theo 1)

=> HIK = CEK (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong

=> AH // CE 

=> AIC = ICE (2 góc so le trong) (3)

IH = CE (theo 2)

mà IH = IA (I là trung điểm của HA)

=> IA = CE (4)

Xét tam giác ACI và tam giác EIC có:

IA = CE (theo 4)

IC là cạnh chung

AIC = ECI (theo 3)

=> Tam giác ACI = Tam giác EIC (c.g.c) (5)

c.

Tam giác ACI = Tam giác EIC (theo 5)

=> AC = EI (2 cạnh tương ứng) (6)

=> ACI = CIE (2 góc tương ứng) mà 2 góc này nằm ở vị trì so le trong

=> IK // AC

Tam giác IHK = Tam giác ECK (theo 1)

=> IK = EK (2 cạnh tương ứng)

=> K là trung điểm của IE

=> IK = EK = 1/2 IE

mà AC = IE (theo 6)

=> IK = 1/2 AC

8 tháng 4 2016

Trả lời giúp mình với

12 tháng 4 2017

a) xét tam giác IHK và tam giác ECK,có

HK=KC( gt)

góc IHK= góc ECK=90 độ

IHK=EKC( đối đỉnh)

--> tam giác IHK= tam giác ECK ( g.c.g)

--> IH=EC ( 2 cạnh tương ứng)

31 tháng 5 2021

ai help mik bài này đc ko

 

31 tháng 5 2021

a) ΔABC vuông tại A 

Áp dụng định lý Pi-ta-go ta có: 

BC2 = AC2+AB2

⇒BC2-AC2=AB2

⇒100-64=AB2

⇒36=AB

⇒AB=6(cm)

b) Xét ΔAIB và ΔDIB có:

góc BAI = góc BDI (= 90 độ)

Chung IB

góc IBA = góc IBD (gt)

⇒ ΔAIB = ΔDIB (ch-gn)

⇒ BA = BD (2 cạnh tương ứng)

c)  Gọi giao BI và AD là F

Xét ΔABF và ΔDBF có:

AB = DB (cmb)

góc ABF = góc DBF (gt)

chung BF

⇒ ΔABF = ΔDBF (c.g.c)

⇒ FA = FD (2 cạnh tương ứng)

góc BFA = góc BFD (2 góc tương ứng) mà góc góc này kề bù nên góc BFA = góc BFD = 90 độ ⇒ BF⊥AD

Vì FA = FD, BF⊥AD ⇒ BI là đường trung trực của AD

d) Gọi giao của BI và EC là G

Xét ΔEBC có: CA⊥BE, ED⊥BC nên I là trọng tâm của ΔEBC nên BG là đường cao thứ 3 của ΔEBC ⇒ BG⊥EC ⇒ BI⊥EC

 

23 tháng 7 2018

A B C H I K E

a) Xét tam giác vuông HIK và tam giác vuông CEK có :

                      HK=KC

                    Góc HKI= góc EKC

=> Tam giác HIK = tam giác CEK ( cạnh góc vuông góc nhọn kệ )

=> IH= EC