Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADCE có
I là trung điểm của AC
I là trung điểm của DE
Do đó: ADCE là hình bình hành
mà AD=CD
nên ADCE là hình thoi
a) xét tứ giác ABDC có:
M là trung điểm của BC
M là trung điểm của AD (D đối xứng A qua M)
=> tứ giác ABDC là bình hành
xét hình bình hành ABDC có: \(\widehat{BAC}\)=90o
=> ABDC là hình chữ nhật
b) không hiểu lắm
a, O là trung điểm của AC (gt)
E đối xứng với D qua O (gt) => O là trung điểm của DE (đn)
xét tứ giá AECD
=> AECD là hình bình hành
Tam giác ABC cân tại A có AD là phân giác => AD là đường cao => AD _|_ BC => góc ADC = 90
=> AECD là hình chữ nhật (dh)
b, tam giác ABC cân tại A (gt)
AD là phân giác (Câu a)
=> AD đồng thời là đường trung tuyến của tam giác ABC (đl)
=> D là trung điểm của BC (đn)
=> BD = BC : 2 (đl)
BC = 6 cm
=> DB = 3 cm
xét tam giác ABD vuông tại D => AB^2 = AD^2 + BD^2
AB = 5 CM
=> 5^2 = 3^2 + AD^2
=> 25 = 9 + AD^2
=> AD^2 = 16
=> AD = 4 do AD > 0
tự tính S
c, ACDE là hình chữ nhật (Câu a)
để ADCE là hình vuông
<=> AD = DC
<=> tam giác ADC cân tại D mà góc ADC = 90
<=> góc ACD = 45
<=> tam giác ABC vuông cân tại A
vậy cần thê đk là vuông
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a) Xét tứ giác ADCE có:
I là trung điểm AC (gt), I là trung điểm DE(gt),. AC giao DE tại I (h.vẽ)
\(\Rightarrow ADCE\)là hbh
b) Để\(ADCE\)là hình thoi
\(\Leftrightarrow AD=DC\)
\(\Rightarrow\Delta ADC\)là tam giác cân tại D
\(\Rightarrow\widehat{A1}=\widehat{C1}\left(1\right)\)
Ta có: \(\widehat{A1}+\widehat{A2}=\widehat{A}=90^0\left(2\right)\)
Vì tam giác ABC vuông ở A nên \(\widehat{B}+\widehat{C1}=90^0\)( 2 góc phụ nhau ) (3)
Từ (1) và (3) \(\Rightarrow\widehat{B}+\widehat{A1}=90^0\)(4)
Từ (2) và (4) \(\Rightarrow\widehat{B}=\widehat{A2}\)
\(\Rightarrow\Delta ABD\)cân ở D
\(\Rightarrow BD=AD\)mà AD=DC
\(\Rightarrow AD=\frac{1}{2}BC\)
Xét tam giác ABC vuông ở A có: \(AD=\frac{1}{2}BC\)
\(\Rightarrow AD\)là đường trung tuyến của tam giác ABC
\(\Rightarrow D\)là trung điểm của BC.
Vậy D phải ở vị trí là trung điểm của BC thì \(ADCE\)là hình thoi.
+) Áp dụng định lý Py-ta-go vào tam giác ABC vuông ở A ta được:
\(AB^2+AC^2=BC^2\)
\(5^2+12^2=BC^2\)
\(169=BC^2\)
\(\Rightarrow BC=13\)mà \(DC=\frac{1}{2}BC\)( D là TĐ BC)
\(\Rightarrow DC=\frac{1}{2}.13=6,5\)
Vậy khi đó cạnh hình thoi ADCE là =6,5cm
a) Xét tứ giác ADCE có: IA = IC (gt)
ID = IE (gt)
=> tứ giác ADCE là hình bình hành
b) Để hình bình hành ADCE là hình thoi
<=> AD = DC
<=> t/giác DAC cân tại D
<=> \(\widehat{DAC}=\widehat{DCA}\)
Do \(\widehat{B}+\widehat{BCA}=90^0\)
\(\widehat{BAD}+\widehat{DAC}=90^0\)
=> \(\widehat{B}=\widehat{BAD}\) <=> t/giác ABD cân tại D
<=> BD = AD (cùng = AD)
<=> D là trung điểm của BC
Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A
Ta có: BC2 = AB2 + AC2
=> BC2 = 52 + 122 = 25 + 144 = 169
=> BC = 13 (cm)
Do D là trung điểm của BC
=> BD = DC = 1/2BC = 1/2.13 = 6,5(cm)
Vậy ...