\(\Delta ABC\perp A\)đường cao AH. M,N là trung điêm của AB và AC .   HM=15cm,  H...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

B M A N C H

Tam giác AHB vuông tại H có HM là trung tuyến

=>  HM = 1/2 AB   => AB = 30 cm

Tam giác AHC vuông tại H có HN là trung tuyến

=>  HN = 1/2 AC  => AC = 40 cm

Áp dụng Pytago ta có:  AB2 + AC2 = BC2

                         =>  BC2 = 302 + 402 = 2500

                         => BC = 50

Áp dụng hệ thức lượng ta có:

AB2 = BH.BC  => \(BH=\frac{AB^2}{BC}=18\)

AC2 = CH.BC  =>  \(CH=\frac{AC^2}{BC}=32\)

HA.BC = AB.AC  =>  \(HA=\frac{AB.AC}{BC}=24\)

15 tháng 4 2020

a) Ta có tứ giác MHNA là hình chữ nhật

\(\Rightarrow\widehat{AMN}=\widehat{AHN}\) ( góc nội tiếp cùng chắn cung AN)

\(\widehat{AHN}=\widehat{ACH}\) ( cùng phụ với \(\widehat{HAN}\) )

\(\Rightarrow\widehat{AMN}=\widehat{ACH}\)

Xét \(\Delta AMN\)\(\Delta ACB\) có:

\(\left\{{}\begin{matrix}\widehat{AMN}=\widehat{ACH}\left(cmt\right)\\\widehat{MAN}chung\end{matrix}\right.\)

\(\Rightarrow\Delta AMN\sim\Delta ACB\left(g.g\right)\)

\(\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\Rightarrow AM.AB=AN.AC\left(đpcm\right)\)

b) Xét \(\Delta AHB\) vuông tại H, \(MH\perp AB\) có:

\(MH^2=MA.MB\left(1\right)\)

cmtt: \(NH^2=NA.NC\left(2\right)\)

Ta lại có: \(HB.HC=AH^2=MN^2\)( 2 đường chéo bằng nhau) (3)
Xét \(\Delta MHN\) vuông tại H có
\(\Rightarrow MH^2+HN^2=MN^2=AH^2\left(4\right)\)

Từ (1),(2),(3) và (4) \(\Rightarrow HB.HC=MA.MB+NA.NC\left(đpcm\right)\)

c) Có \(HB=\frac{AC^2}{BC}\)

\(HC=\frac{AC^2}{BC}\)

\(\Rightarrow\frac{BH}{HC}=\frac{AB^2}{BC}:\frac{AC^2}{BC}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2\)

15 tháng 4 2020

cảm ơn ạ

16 tháng 6 2019

A B C H N M 3 4

Xét \(\Delta HAC\)vuông tại H  có HN là đường trung tuyến ứng với cạnh huyền 

=> HN = NC = NA = AC/2 

=> AC = 2HN = 8

Tương tự AB = 6

Theo hệ thức lượng trong tam giác vuông cho tam giác ABC vuông tại A có AH là đường cao thì

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)

\(\Leftrightarrow AH=\frac{24}{5}\)

Áp dụng định lí Pytago vào \(\Delta HAC\)vuông tại H có

\(HA^2+HC^2=AC^2\)

\(\Leftrightarrow\left(\frac{24}{5}\right)^2+HC^2=8^2\)

\(\Leftrightarrow HC=\frac{32}{5}\)

Tương tự \(HB=\frac{18}{5}\)

A B C H M N

Vì M là trung điểm của AB => HM là trung tuyến 

Mà \(\Delta ABH\)vuông tại H 

=> \(HM=\frac{1}{2}AB\)( trong tam giác vuông trung tuyến ứng với cạnh huyền = 1 phần 2 cạnh huyền )

=> AB = 30 cm

Chứng minh tương tự 

=> AC= 40 cm

Xét \(\Delta ABC\)có ( A = 900 )

=> \(BC=\sqrt{AC^2+AB^2}=50\)cm

Áp dụng hệ thức cạnh trong tam giác vuông ta có :

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

\(\Rightarrow\frac{1}{AH}=\sqrt{\frac{1}{AB^2}+\frac{1}{AC^2}}=\frac{1}{24}\)

\(\Rightarrow AH=24cm\)

Áp dụng hệ thức cạnh trong tam giác vuông ta có :

\(AB^2=BH.BC\)

\(\Rightarrow BH=AB^2:BC=18cm\)

Vì BH + HC = BC 

\(\Rightarrow HC=50-18=32cm\)

Study well 

18 tháng 6 2019

a/ Có tứ giác MHNA là hcn\(\Rightarrow\widehat{AMN}=\widehat{AHN}\) (góc nt cùng chắn \(\stackrel\frown{AN}\))

\(\widehat{AHN}=\widehat{ACH}\) (cùng phụ vs \(\widehat{HAN}\))

\(\Rightarrow\widehat{AMN}=\widehat{ACH}\)

Xét \(\Delta AMN\)\(\Delta ACB\) có:

\(\widehat{AMN}=\widehat{ACH}\left(CMT\right)\)

\(\widehat{MAN}\) : góc chung

\(\Rightarrow\Delta AMN\sim\Delta ACB\left(gg\right)\)

\(\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\Leftrightarrow AM.AB=AN.AC\)

b/ Có \(HB=\frac{AB^2}{BC}\)

\(HC=\frac{AC^2}{BC}\)

\(\Rightarrow\frac{HB}{HC}=\frac{\frac{AB^2}{BC}}{\frac{AC^2}{BC}}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2\)

c/ Xét \(\Delta AHB\) vuông tại H,\(MH\perp AB\)

\(\Rightarrow MA.MB=MH^2\)(1)

tương tự\(\Rightarrow NA.NC=HN^2\) (2)

\(HB.HC=AH^2=MN^2\) (2 đường chéo bằng nhau)(3)

Xét \(\Delta MHN\) vuông tại H

\(\Rightarrow MH^2+HN^2=MN^2=AH^2\)(4)

Từ (1),(2),(3),(4)\(\Rightarrow HB.HC=MA.MB+NA.NC\)

25 tháng 7 2018

a) Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(AH^2=AM\cdot AB\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(AH^2=AN\cdot AC\left(2\right)\)

Từ(1) và (2) ta được: \(AM\cdot AB=AN\cdot AC\)

b) Ta có: MHNA là hình chữ nhật(pn tự cm nha cái này dễ)

\(\Rightarrow MH=AN\)

Áp dụng hệ thức lượng trong \(\Delta vAHC\), ta có:

\(HN^2=AN\cdot NC\)

Áp dụng hệ thức lượng trong \(\Delta vAHB\), ta có:

\(HM^2=AM\cdot MB\)

Áp dụng hệ thức lượng trong \(\Delta vAHN\), ta có:

\(AN^2+HN^2=AH^2\)

\(MH=AN\)

\(\Rightarrow MH^2+HN^2=AH^2\)

\(\Rightarrow BM\cdot MA+AN\cdot NC=BH\cdot HC\)

c) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)

d) Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AC^2=HC\cdot BC\Rightarrow AC^4=HC^2\cdot BC^2\)

\(\Rightarrow AC^4=NC\cdot AC\cdot BC^2\Rightarrow AC^3=NC\cdot BC^2\left(1\right)\)

Áp dụng hệ thức lượng trong \(\Delta vABC\), ta có:

\(AB^2=HB\cdot BC\Rightarrow AB^4=HB^2\cdot BC^2\)

\(\Rightarrow AB^4=BM\cdot AB\cdot BC^2\Rightarrow AB^3=BM\cdot BC^2\left(2\right)\)

Lấy (2) chia (1) ta được: \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)

26 tháng 10 2019

Xét ∆ ABC vuông tại A có M là trung điểm AB

=> HM là đường trung tuyến ứng với cạnh huyền AB

=> HM = 1 2 AB => AB = 2HM = 2. 15 = 30 (cm)

Xét ∆ ACH vuông tại H có N là trung điểm AC

=> HN là đường trung tuyến ứng với cạnh huyền AC

=> HN = 1 2 AC => AC = 2HN = 2. 20 = 40 (cm)

Áp dụng định lý Pitago cho ABH vuông tại A có:

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

Ta có: HC = BC – BH = 50 – 18 = 32 (cm)

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

AH.BC = AB.AC => AH.50 = 30.40 => AH = 24 (cm)

Đáp án cần chọn là: D