\(\Delta ABC\left(AB=AC;\widehat{A} < 90^o\right)\), vẽ \(BH\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

A B C D K H F E

Kẻ DK \(\perp\) BH

Ta có: DK \(\perp\)BH

AC \(\perp\) BH

\(\Rightarrow\)DK // AC

\(\Rightarrow\) \(\widehat{BDK}=\widehat{C}\) (hai góc đồng vị) (1)

\(\Delta ABC\) cân tại A \(\Rightarrow\) \(\widehat{DBF}=\widehat{C}\) (2)

Từ (1) và (2) suy ra: \(\widehat{BDK}=\widehat{DBF}\)

Xét hai tam giác vuông BDK và DBF có:

BD: cạnh huyền chung

\(\widehat{BDK}=\widehat{DBF}\) (cmt)

Vậy: \(\Delta BDK=\Delta DBF\left(ch-gn\right)\)

Suy ra: BK = DF (hai cạnh tương ứng) (3)

Ta lại có DE // KH, DK // EH nên chứng minh được: DE = KH (4)

Từ (3) và (4) suy ra: DE + DF = KH + BK = BH (đpcm).

5 tháng 1 2021

Hình bạn tự vẽ nhé!

Giải:

Vì D là trung điểm của AC (gt)

nên AD = CD

Xét \(\Delta ABD\) và \(\Delta CED\) có:

AD = CD (chứng minh trên)

\(\widehat{ADB}=\widehat{CDE}\)(2 góc đối đỉnh)

ED = BD (gt)

\(\Rightarrow\Delta ABD=\Delta CED\) (c.g.c)   (1)

\(\Rightarrow\widehat{ABD}=\widehat{CED}\) (2 góc tương ứng)  

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\)AB // CD  (dấu hiệu nhận biết)  (2)

Từ (1), (2) \(\Rightarrowđpcm\)

b) Ta có: AF _|_ BD tại F

              CG _|_ DE tại G

\(\Rightarrow\hept{\begin{cases}\widehat{AFD}=90^o\\\widehat{CGD}=90^o\end{cases}}\Rightarrow\widehat{AFD}=\widehat{CGD}\)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow\) AF // CG (dấu hiệu nhận biết) (3)

\(\Rightarrow\widehat{FAH}=\widehat{DCG}\) (2 góc so le trong)

Xét \(\Delta ADF\) và \(\Delta CDG\) có:

AD = CD (chứng minh trên)

\(\widehat{ADF}=\widehat{CDG}\) (2 góc đối đỉnh)

\(\widehat{FAH}=\widehat{DCG}\) (chứng minh trên)

\(\Rightarrow\Delta ADF=\Delta CDG\) (g.c.g)

\(\Rightarrow\) DF = DG (2 cạnh tương ứng)  (4)

Từ (3), (4) \(\Rightarrowđpcm\)

c) Xét \(\Delta CDE\) có:

Giao điểm 2 đường thẳng CG và EI là M

CG, EI đều là đường cao của \(\Delta CDE\)

\(\Rightarrow\)DM cũng là đường cao của \(\Delta CDE\)

\(\Rightarrow DM\perp AB\)(5)

Xét \(\Delta ABD\) có:

Giao điểm 2 đường thẳng CG, EI là M

AF, BH đều là đường cao của \(\Delta ABD\)

\(\Rightarrow DK\) cũng là đường cao của \(\Delta ABD\)

\(\Rightarrow DK\perp AB\) (6)

Từ (5), (6) suy ra đpcm

a: Xét ΔABH và ΔACH có

AB=AC
BH=CH

AH chung

Do đó: ΔABH=ΔACH

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

b: Xét ΔAEH và ΔADH có

AE=AD
góc EAH=góc DAH

AH chung

Do đo; ΔAEH=ΔADH

=>góc AEH=góc ADH=90 độ

=>HE vuông góc với AB

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

5 tháng 5 2018

Hình ảnh bạn tự vẽ nhé!

a/ Tam giác ADI vuông tại I và tam giác ADI vuông tại I có:

ID = IH ( vì I là trung điểm của HD)

IA là cạnh chung

=> \(\Delta ADI=\Delta AHI\)( hai cạnh góc vuông)

b/ Tam giác ADB và tam giác AHB có:
AD = AH ( tam giác ADI = tam giác AHI)

\(\widehat{DAI}\) = \(\widehat{HAI}\)( vì tam giác ADI = tam giác AHI)

BA là cạnh chung.

=> Tam giác ADB = tam giác AHB ( c.g.c)

=> D = H = 90 độ

=> AD\(\perp\)BD tại D