\(\Delta ABC\)đều.Từ 1 điểm M trên cạnh AB vẽ hai đường thẳng song song với hai cạnh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là...
Đọc tiếp

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .

Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là đường thẳng AB) sao cho các tia MA, MB tạo với đường thẳng d một tam giác có diện tích nhỏ nhất.

Bài 8: Cho tam giác ABC, trên cạnh BC, CA và AB lần lượt lấy các điểm M, N và P sao cho: a) Chứng minh rằng: AM, BN, CP là độ dài ba cạnh của một tam giác mà ta kí hiệu là \(\Delta\)(k). b) Tìm k để diện tích tam giác \(\Delta\)(k) nhỏ nhất.

0
11 tháng 4 2018

Violympic toán 8

M trung điểm AB (trùng N) thì DE ngắn nhất =1/2.AB

c/m dùng đường phụ ;do tính đối xưng ; g/s BM<AM từ M kẻ MD'// ED ; MEDD' là hbh

Tam giác AMD'dẽ dàng c/m MD' >AN

30 tháng 3 2020

A E B D C F

Theo Talet có :  DE //AC => \(\frac{CD}{CB}=\frac{AE}{AB}\)

                        : DF // AB => \(\frac{BD}{BC}=\frac{AF}{AC}\)

Giả sử EF // BC => \(\frac{AE}{AB}=\frac{AF}{AC}\Rightarrow\frac{CD}{CB}=\frac{BD}{BC}\)

=> CD = BD 

=> D là trung điểm của BC