K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

A B C D

a) Xét tam giác ADB và tam giác ADC

  Có AB=AC   (gt)

        BD=CD     (gt)

      AD là cạnh chung 

=> tam giác ADB = tam giác ADC (c.c.c)   (đpcm)

b) Có tam giác ADB = tam giác ADC (cmt)

=> góc BAD = góc CAD (2 cạnh tương ứng)

=> AD là tia pg của góc BAC (đpcm)

c) Có tam giác ADB = tam giác ADC (cmt)

=> góc ADB = góc ADC (2 góc tương ứng)

Mà góc ADB + góc ADC =180o (kề bù)

=> 2 . góc ADB =180o

=> góc ABD =90o

=>AD\(\perp\)BC    (đpcm)

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của góc BAC

b: Sửa đề: DM\(\perp\)AB tại M. Chứng minh AC\(\perp\)DN

Xét ΔAMD và ΔAND có

AM=AN

\(\widehat{MAD}=\widehat{NAD}\)

AD chung

Do đó: ΔAMD=ΔAND

=>\(\widehat{AMD}=\widehat{AND}\)

mà \(\widehat{AMD}=90^0\)

nên \(\widehat{AND}=90^0\)

=>DN\(\perp\)AC

c: Xét ΔKCD và ΔKNE có

KC=KN

\(\widehat{CKD}=\widehat{NKE}\)(hai góc đối đỉnh)

KD=KE

Do đó: ΔKCD=ΔKNE

d: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

Ta có: ΔKCD=ΔKNE

=>\(\widehat{KCD}=\widehat{KNE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên NE//DC

=>NE//BC

ta có: NE//BC

MN//BC

NE,MN có điểm chung là N

Do đó: M,N,E thẳng hàng

10 tháng 1 2022

10 tháng 1 2022

TK

 

22 tháng 11 2018

A B D C

a/ Xét \(\Delta ADB;\Delta ADC\) có :

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\DB=DC\left(gt\right)\\ADchung\end{matrix}\right.\)

\(\Leftrightarrow\Delta ADB=\Delta ADC\left(c-c-c\right)\)

b/ Xét \(\Delta ABC\) có :

\(AB=AC\)

\(\Leftrightarrow\Delta ABC\) cân tại A

Lại có : trung tuyến AD

\(\Leftrightarrow AD\) cũng là tia phân giác của \(\widehat{BAC}\)

c/ \(\Delta ABC\) cân tại A

Lại có : Trung tuyến AD

\(\LeftrightarrowÁD\) cũng là đường cao

\(\Leftrightarrow AD\perp BC\left(đpcm\right)\)

17 tháng 12 2017

A B C D

a, Xét \(\Delta ADB;\Delta ADC\) có :

\(\left\{{}\begin{matrix}AB=AC\\DB=DC\\ADchung\end{matrix}\right.\)

\(\Leftrightarrow\Delta ADB=\Delta ADC\left(c-c-c\right)\)

b, \(\Delta ADB=\Delta ADC\left(cmt\right)\)

\(\Leftrightarrow\widehat{BDA}=\widehat{ADC}\)

Lại có :

\(\widehat{BDA}+\widehat{ADC}=180^0\left(kềbuf\right)\)

\(\Leftrightarrow\widehat{BDA}+\widehat{ADC}=\dfrac{180^0}{2}=90^0\)

\(\Leftrightarrow AD\perp BC\)

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD = DEb )...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
12 tháng 11 2015

       a,  Xét tam giác ADB và tam giác ADC có:                                                                                                                 AB=AC( giả thiết ) ; BD=DC(giả thiết); cạnh AD chung                                                                                       \(\rightarrow\) Tam giác ADB= tam giác ADC                                                                                         b,Tam giác ADB=tam giác ADC(theo câu a) nên góc DAB=góc DAC(2 góc tương ứng)                                          \(\rightarrow\) AD là tia phân giác của góc BAC                                                                                                  c,   Vì tam giác ADB=ADC(câu a) nên góc ADB bằng góc ADC( 2 góc tương ứng)    (1)                                              Ta có góc ADB+góc ADC=180 độ (kề bù)          (2)                                                                                     Từ (1) và (2) \(\rightarrow\) góc ADB=90 độ                                                                                                             \(\Rightarrow\) AD vuông góc voi BC