Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABH và ACK có:
AH=AK(gt)
AB=AC(tam giác ABC cân)
Â:góc chung
=> ABH=ACK
=> Góc ABH= Góc ACK
=> Góc OBC= Góc OCB
=> OBC cân tại O
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc BAH chung
Do đó ΔABH=ΔACK
b: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
c: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có
OB=OC
KB=HC
Do đó:ΔOBK=ΔOCH
Đề sao sao ý? Tam giác ABC cân chắc chắn AB = AC rồi. Lấy điểm H,K làm gì?
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
MF _|_ BH (gt) và BH _|_ AC (gt) => FM // AC (đl)
=> góc FMB = góc ACB (đồng vị)
mà góc ACB = góc ABC do tam giác ABC cân tại A (gt)
=> góc FMB = góc ABC
xét tam giác BDM và tam giác MFB có : BM chung
góc BDM = góc BFM = 90
=> tam giác BDM = tam giác MFB (ch-gn)
=> BD = FM (đn) (1)
xét tứ giác FHEM có : góc MFH = góc FHE = góc HEM = 90
=> FHEM là hình chữ nhật (dh)
=> FM = HE (tc) và (1)
=> BD = HE (2)
kẻ DO // AC
=> góc BOD = góc ACB (đồng vị)
góc ACB = góc ABC (cmt)
=> góc DBO = góc DOB
=> tam giác DOB cân tại D (dh)
=> BD = DO và (2)
=> DO = HE
mà HE = CK (gt)
=> DO = CK (3)
gọi DK cắt BC tại N
xét tam giác DNO và tam giác KNE có : góc DNO = góc KNE (đối đỉnh)
góc ODN = góc NKC do DO // AC (cách vẽ) và (3)
=> tam giác DNO = tam giác KNE (g-c-g)
=> DN = NK (đn)
mà N nằm giữa D và K
=> N là trung điểm của DK
N thuộc BC
=> BC đi qua trung điểm của DK
em viết đề rõ cái đi
may khong co dau nhe