\(\Delta ABC\) vuông tại A. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

Xét tam giác BDE và tam giác ADE , co :

BD = AD ( tam giac ABD can tai D )

DE cạnh chung

AD = BE =\(\dfrac{BC}{2}\)(AE là đường trung tuyến của tam giác ABC)

=> tam giac BDE = tam giac ADE (c-c-c)

=> BED=AED (2 gốc tuong ứng )

=> DE là tia phân giác của ABE

Trong tam giác ABE cân tại E (AD =BE) , co :

DE là tia phân giác của BEA (cmt)

=> DE là đường cao của tam giác ABE

=> DE \(\perp\) AB (dpcm)

21 tháng 8 2019

giup mình với mai đi hc rồi

17 tháng 2 2020

Mik ghi nhầm BCX=1/2 BAC nha

17 tháng 2 2020

A B C D E

a) Xét \(\Delta\)ABD và  \(\Delta\)CED có:

^BAD = ^ECD ( = 1/2 ^BCx ) 

^ADB = ^CDE ( đối đỉnh) 

=> \(\Delta\)ABD ~ \(\Delta\)CED ( g-g)

b) Xét \(\Delta\)EAC và \(\Delta\)ECD có:

^EAC = ^ECD ( = 1/2 ^BCx ) 

^AEC = ^CED ( ^E chung )

=> \(\Delta\)EAC ~ \(\Delta\)ECD ( g-g)

=> \(\frac{AE}{AC}=\frac{EC}{CD}\)(1)

Mặt khác từ (a) => \(\frac{AB}{AD}=\frac{EC}{CD}\)(2)

Từ (1) ; (2) => \(\frac{AE}{AC}=\frac{AB}{AD}\)=> AB. AC = AE.AD < AE. AE  (3)

=> AB. AC < \(AE^2\)

c) Từ (3) ta có: AB. AC = AE.AD  

Ta lại có: \(4AI^2-DE^2=\left(2AI-DE\right)\left(2AI+DE\right)\)

Vì I là trung điểm DE nên DI = IE = 1/2 DE => DE = 2 DI = 2IE

+) 2AI - DE = 2 ( AD + DI ) - 2 DI  = 2AD + 2 DI - 2 DI = 2 AD

+) 2AI + DE = 2 ( AD + DI ) + DE = 2 AD + 2 DI + DE = 2 AD  + DE + DE = 2 AD + 2 DE = 2 ( AD + DE ) = 2 AE 

=> \(4AI^2-DE^2=2AD.2DE=4AD.DE=4AB.AC\)

Vậy...

d) Xét \(\Delta\)BDE và \(\Delta\)ADC có:

\(\frac{BD}{ED}=\frac{AD}{CD}\)( suy ra từ (a) )

^BDE = ^ADC ( đối đỉnh)

=> \(\Delta\)BDE ~ \(\Delta\)ADC ( g-c)

=> ^EBD = ^CAD = DCE 

=> \(\Delta\)BEC cân 

=> EB = EC 

=> Trung trực BC qua E 

Hình Tự kẻ

Xét Tam giác ABC và Tam giác DBE có : BAC = BDE ; ABC = DBE

Từ Tam giác ABC và Tam giác DBE đồng dạng suy ra góc C = Góc E

Xét Tam giác MDC và MAE (đồng dạng ) suy ra MA / MD = ME / MC  , suy ra MA.MC=MD.ME

Xét tam giác MAD và Tam giác MCE có : AMD = CME ; MA/MD=ME/MC , Suy ra Tam giác MAD đồng dạng với Tam giác MEC

A B C M D E

a, Xét tam giác ABC và tam giác DBE có :

              góc B chung 

              góc BAC = góc BDE (=90độ )

Do đó : tam giác ABC đồng dạng với tam giác DBE ( g.g )

b, Xét tam giác MAE và tam giác MDC có :

              góc MAE = góc MDC ( = 90độ )

              góc AME = góc DMC ( đối đỉnh )

Do đó : tam giác MAE đồng dạng với tam giác MDC ( g.g )

\(\Rightarrow\frac{MA}{MD}=\frac{ME}{MC}\)

\(\Rightarrow MA.MC=MD.ME\)

c,d :  Tự làm nốt nhé , em mới lớp 7 nên đến đây chịu ạ .

Học tốt

24 tháng 9 2019

a, tam giác ABC cân tại A (gt)

=> góc B = góc C (đl)

xét tam giác HBD và tam giác KCE có : BD = CE (gt)

góc BHD = góc EKC = 90 do DH _|_ AB; EK _|_ AC (gt)

=> tam giác HBD = tam giác KCE (ch-gn)