\(\Delta ABC\) vuông tại A, M là trung điểm của BC.CMR:AM=1/2 BC

(Các bạn giú...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

Có nhiều cách chứng minh, trong bài này mình sẽ dùng một cách.

Giải:

A B C M D

Trên tia đối của tia MA lấy điểm D sao cho M là trung điểm của AD.

Xét \(\Delta AMB\)\(\Delta CMD\), có:

\(MB=MC\) (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\) (Hai góc đối đỉnh)

\(MA=MD\) (M là trung điểm của AD)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c.g.c\right)\)

\(\Rightarrow\widehat{ABM}=\widehat{DCM}\) (Hai góc tương ứng)

\(\Rightarrow\) AB song song với DC (Vì có hai góc so le trong bằng nhau)

Mà: \(\widehat{BAC}=90^0\)

\(\Rightarrow\widehat{DCA}+\widehat{BAC}=180^0\) (Hai góc trong cùng phía)

\(\Rightarrow\widehat{DCA}=180^0-\widehat{BAC}=180^0-90^0=90^0\)

\(\Rightarrow\widehat{BAC}=\widehat{DCA}\left(=90^0\right)\)

Xét \(\Delta ABC\)\(\Delta CDA\), có:

\(\widehat{BAC}=\widehat{DCA}=90^0\) (Chứng minh trên)

\(AB=CD\) (\(\Delta AMB=\Delta CMD\))

AC là cạnh chung

\(\Rightarrow\Delta ABC=\Delta CDA\) (Hai cạnh góc vuông)

\(\Rightarrow BC=DA\) (Hai cạnh tương ứng)

\(\Leftrightarrow\dfrac{1}{2}BC=\dfrac{1}{2}DA\)

Hay \(AM=\dfrac{1}{2}BC\) (đpcm)

Chúc bạn học tốt!ok

18 tháng 6 2017

Mình nghĩ câu này không cần chứng minh đâu, tính chất này đã được suy ra rồi: Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền.

3 tháng 3 2017

A B C M H N K

a) Xét \(\Delta ABM\)\(\Delta ACM\) có:

AB = AC (\(\Delta ABC\) cân tại A)

AM chung

BM = CM (suy từ gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

hay \(\widehat{HBM}=\widehat{KCM}\)

Xét \(\Delta HBM\) vuông tại H và \(\Delta KCM\) vuông tại K có;

BM = CM

\(\widehat{HBM}=\widehat{KCM}\) (c/m trên)

\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)

c) Ta có: \(BM=CM=\dfrac{1}{2}BC\) (M là tđ)

\(\Rightarrow BM=CM=\dfrac{1}{2}.16=8\)

\(\Delta ABM=\Delta ACM\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\) = \(90^o\)

\(\Rightarrow\Delta ABM\) vuông tại M

Áp dụng định lý pytago vào \(\Delta ABM\) vuông tại M có:

\(AB^2=AM^2+BM^2\)

\(\Rightarrow AM^2=17^2-8^2\)

\(\Rightarrow AM^2=15^2\)

\(\Rightarrow AM=15\)

Lại có: \(AN=NM=\dfrac{1}{2}AM=\dfrac{1}{2}.15=7,5\)

Vậy \(S_{\Delta BNC}=\dfrac{NM.BC}{2}=\dfrac{7,5.16}{2}=60\) \(\left(cm^2\right)\).

17 tháng 3 2017

Sao bt sai, nhỡ là cách khác thì sao???

17 tháng 3 2017

chắc chắn sai mà . Đọc kĩ lại đi!!!

14 tháng 12 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{x-y-1+3}{4011}=\dfrac{4009-1+3}{4011}=\dfrac{4011}{4011}=1.\)

Từ đó:

\(\dfrac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006.\)

\(\dfrac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003.\)

Vậy \(x=2006;y=-2003.\)

6 tháng 2 2017

Yêu cầu của bài là j vậy?

5 tháng 2 2017

\(\)\(A=2^0+2^1+2^2+2^3+...+2^{2012}\\ A=1+2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2010}+2^{2011}+2^{2012}\right)\\ A=3+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2010}\cdot\left(1+2+2^2\right)\\ A=3+2^2\cdot\left(1+2+4\right)+2^5\cdot\left(1+2+4\right)+...+2^{2010}\cdot\left(1+2+4\right)\\ A=3+2^2\cdot7+2^5\cdot7+...+2^{2010}\cdot7\\ A=3+7\cdot\left(2^2+2^5+...+2^{2010}\right)\\ \)

15 tháng 2 2017

Cô giải rồi lên đây giải làm j nữa.

9 tháng 8 2017

Để mai mk lm giờ pùn ngủ quá ^ ^

10 tháng 8 2017

humlimdimlimdimlimdimlimdim

\(-\dfrac{628628}{942942}=-\dfrac{2.314314}{3.314314}=-\dfrac{2}{3}\)

3 tháng 8 2017

\(\dfrac{-628628}{942942}=\dfrac{\left(-628628\right):314314}{942942:314314}=\dfrac{-2}{3}\)

5 tháng 4 2017

a) \(\left(x-3\right)\left(x-2\right)< 0\)

Ta có : \(x-2>x-3\)

\(\Rightarrow\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)

Vậy \(2< x< 3\)

b) \(3x+x^2=0\)

\(x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

Vậy \(x\in\left\{-3;0\right\}\)

10 tháng 9 2017

a a' a//a' mk chưa chắc đã đúng :D